Sains Malaysiana 48(10)(2019): 2185–2190

http://dx.doi.org/10.17576/jsm-2019-4810-14

 

Binocular and Monocular Resolution Thresholds throughout Adulthood for Luminance-Modulated and Contrast-Modulated Noise Letters

(Nilai Ambang Resolusi Monokular dan Binokular sepanjang Usia Dewasa untuk Stimulus Hingar Termodulasi Luminans dan Kontras)

 

PUI JUAN WOI, SHARANJEET-KAUR & MOHD IZZUDDIN HAIROL*

 

Optometry & Vision Science Programme, Centre for Community Health, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Federal Territory, Malaysia

 

Received: 7 October 2018/Accepted: 20 September 2019

 

ABSTRACT

Contrast-modulated (CM) noise stimuli are thought to be processed in higher, more binocular visual areas compared to luminance-modulated (LM) stimuli, and the ability to perceive them may be more susceptible to ageing. The aim of this study was to determine monocular and binocular resolution thresholds for LM and CM noise letters throughout adulthood. Resolution thresholds for LM and CM noise letters were measured in 25 participants (age 21-70 years old) under monocular and binocular viewing. Stimuli were H, O, T and V letters created by adding or multiplying a luminance modulation function to a binary white noise carrier to create LM and CM noise letters, respectively. Resolution thresholds, determined using a 2-down-1-up staircase procedure, were lower for LM, than for CM, stimuli in both monocular and binocular viewing conditions (p<0.05). Binocular summation ratio for CM noise letters was significantly higher than that for LM noise letters (p<0.05) but declined rapidly with increasing age. For the youngest age group (20-29 years old), binocular resolution threshold was 39% better (~1.5-line improvement on the clinical letter chart) than monocular resolution threshold for CM noise letters, but only 15% better (~0.5-line improvement) when measured with LM noise letters. Binocular performance for CM noise letters declines at a faster rate with increasing age compared to that for LM noise letters. Visual function measurement with contrast-modulated stimuli might be useful to detect subtle binocular vision anomalies that may occur in early adulthood, which may be missed if measured with luminance-based stimuli alone.

Keywords: Ageing; binocular resolution; contrast-modulated; luminance-modulated; monocular resolution

 

ABSTRAK

Rangsangan hingar modulasi kontras (CM) dianggap diproses lebih tinggi, di kawasan yang mempunyai lebih visual binokular berbanding rangsangan modulasi luminans (LM) dan keupayaan untuk mengamatinya mungkin lebih terdedah kepada penuaan. Matlamat kajian ini adalah untuk menentukan ambang resolusi monokular dan binokular untuk huruf hingar LM dan CM sepanjang tempoh dewasa. Ambang resolusi untuk huruf hingar LM dan CM telah diukur pada 25 peserta (umur 21-70 tahun) di bawah penglihatan monokular dan binokular. Rangsangan adalah huruf H, O, T dan V yang dicipta dengan menambah atau mendarabkan fungsi modulasi luminans kepada pembawa bunyi putih untuk mewujudkan huruf hingar LM dan CM. Ambang resolusi ditentukan menggunakan prosedur tangga 2-turun-1-naik, lebih rendah untuk LM berbanding CM untuk rangsangan dalam kedua-dua keadaan pandangan monokular dan binokular (p < 0.05). Nisbah penjumlahan binokular untuk huruf hingar CM adalah jauh lebih tinggi daripada untuk huruf hingar LM (p < 0.05) tetapi menurun dengan cepat dengan peningkatan umur. Bagi kumpulan umur bongsu (20-29 tahun), ambang resolusi binokular adalah 39% lebih baik (peningkatan garisan ~1.5 dalam carta huruf klinikal) berbanding ambang resolusi monokular untuk huruf hingar CM, tetapi hanya 15% lebih baik (peningkatan garisan ~0.5) apabila diukur dengan huruf hingar LM. Prestasi binokular untuk huruf hingar CM menurun pada kadar yang lebih cepat dengan peningkatan umur berbanding dengan huruf hingar LM. Pengukuran fungsi visual dengan rangsangan modulasi kontras mungkin berguna untuk mengesan anomali visual binokular halus yang mungkin berlaku pada peringkat awal dewasa, yang mungkin terlepas pandang jika diukur dengan berasaskan luminans sahaja.

Kata kunci: Modulasi kontras; modulasi luminans; penuaan; resolusi binokular; resolusi monokular

 

REFERENCES

 

Baker, C.L. & Mareschal, I. 2001. Processing of second-order stimuli in the visual cortex. Progress in Brain Research 134: 171-191.

Bassi, C.J., Solomon, K. & Young, D. 1993. Vision in aging and dementia. Optometry and Vision Science 70(10): 809-813.

Bertone, A., Guy, J. & Faubert, J. 2011. Assessing spatial perception in aging using an adapted Landolt-C technique. Neuroreport 22: 951-955.

Brewer, A.A. & Barton, B. 2012. Effects of healthy aging on human primary visual cortex. Health 4(9A): 695-702.

Brewer, A. & Barton, B. 2014. Visual cortex in aging and Alzheimer’s disease: Changes in visual field maps and population receptive fields. Frontiers in Psychology. https:// www.frontiersin.org/article/10.3389/fpsyg.2014.00074.

Calvert, J., Manahilov, V., Simpson, W.A. & Parker, D.M. 2005. Human cortical responses to contrast modulations of visual noise. Vision Research 45(17): 2218-2230.

Chubb, C. & Sperling, G. 1988. Drift-balanced random stimuli: A general basis for studying non-Fourier motion perception. J. Opt. Soc. Am. 5(11): 1986-2007.

Chung, S.T.L., Li, R.W. & Levi, D.M. 2006. Identification of contrast-defined letters benefits from perceptual learning in adults with amblyopia. Vision Research 46(22): 3853-3861.

Costa, T.L., Nogueira, R.M.T.B.L., Pereira, A.G.F. & Santos, N.A. 2013. Differential effects of aging on spatial contrast sensitivity to linear and polar sine-wave gratings. Brazilian Journal of Medical and Biological Research 46(10): 855-860.

Crossland, M.D., Morland, A.B., Feely, M.P., Von Dem Hagen, E. & Rubin, G.S. 2008. The effect of age and fixation instability on retinotopic mapping of primary visual cortex. Investigative Ophthalmology and Visual Science 49: 3734-3739.

Dosher, B.A. & Lu, Z.L. 2006. Level and mechanisms of perceptual learning: Learning first-order luminance and second-order texture objects. Vision Research 46(12): 1996- 2007.

Ellemberg, D., Lavoie, K., Lewis, T.L., Maurer, D., Lepore, F. & Guillemot, J.P. 2003. Longer VEP latencies and slower reaction times to the onset of second-order motion than to the onset of first-order motion. Vision Research. http://doi. org/10.1016/S0042-6989(03)00006-3.

Elliot, D.B., Yang, K.C.H. & Whitaker, D. 1995. Visual acuity changes throughout adulthood in normal, healthy eyes: Seeing beyond 6/6. Optometry and Vision Science 72(3): 186-191.

Elliott, D.B., Whitaker, D. & Bonette, L. 1990. Differences in the legibility of letters at contrast threshold using the Pelli- Robson chart. Ophthalmic and Physiological Optics 10(4): 323-326.

Frisen, L. & Frisen, M. 1981. How good is normal visual acuity? A study of letter acuity thresholds as a function of age. Albrecht Yon Graefes Arch Klin. Ophthalmol. 215: 149-157.

Fun, S.P., Mohidin, N., Kamal, A.A.M., Mohammed, Z. & Mohd- Ali, B. 2016. Mild cognitive impairment does not affect pattern electroretinogram in the elderly-a pilot study. Sains Malaysiana 45(9): 1399-1403.

Habak, C. & Faubert, J. 2000. Larger effect of aging on the perception of higher-order stimuli. Vision Research 40(2000): 943-950.

Hairol, M.I., Formankiewicz, M. & Waugh, S.J. 2013. Foveal visual acuity is worse and shows stronger contour interaction effects for contrast-modulated than luminance-modulated Cs. Visual Neuroscience 30: 105-120.

Hairol, M.I. & Waugh, S.J. 2010. Lateral facilitation revealed dichoptically for luminance-modulated and contrast-modulated stimuli. Vision Research 50(23): 2530-2542.

Larsson, J., Landy, M.S. & Heeger, D.J. 2006. Orientation-selective adaptation to first- and second-order patterns in human visual cortex. Journal of Neurophysiology 95: 862- 881.

Mohammed, Z., Mansor, S.Z. & Mohamed Akhir, S. 2016. Refractive error and visual acuity of elderly Chinese in Selangor and Johor, Malaysia. Sains Malaysiana 45(9): 1393-1398.

Ng, T.P. 2016. Cognitive health of older persons in longitudinal ageing cohort studies. Sains Malaysiana 45(9): 1351-1355.

Schofield, A.J. & Georgeson, M.A. 1999. Sensitivity to modulations of luminance and contrast in visual white noise: Separate mechanisms with similar behaviour. Vision Research 39(16): 2697-2716.

Schofield, A.J. & Georgeson, M.A. 2003. Sensitivity to contrast modulation: The spatial frequency dependence of second-order vision. Vision Research 43: 243-259.

Shen, Y. 2013. Comparing adaptive procedures for estimating the psychometric function for an auditory gap detection task. Atten Percept. Psychophys. 75(4): 771-780.

Smith, A.T. & Ledgeway, T. 1997. Separate detection of moving luminance and contrast modulations: Fact or Artifact ? Vision Research 37(1): 45-62.

Sukumar, S. & Waugh, S.J. 2007. Separate first- and second-order processing is supported by spatial summation estimates at the fovea and eccentrically. Vision Research 47: 581-596.

Tanaka, H. & Ohzawa, I. 2006. Neural basis for stereopsis from second-order contrast cues. Journal of Neuroscience 26(16): 4370-4382.

Tang, Y. & Zhou, Y. 2009. Age-related decline of contrast sensitivity for second-order stimuli: Earlier onset, but slower progression, than for first-order stimuli. Journal of Vision 9: 18.

Waugh, S.J., Formankiewicz, M.A., Ahmad, N. & Hairol, M.I. 2010. Effects of dioptric blur on foveal acuity and contour interaction for noisy Cs. Journal of Vision 10(7): 1330.

Woi, P.J., Kaur, S., Waugh, S.J. & Hairol, M.I. 2016. Visual acuity measured with luminance-modulated and contrast-modulated letter stimuli in young adults and adults above 50 years old. F1000Research 5: 1961.

Wong, E.H., Levi, D.M. & McGraw, P.V. 2005. Spatial interactions reveal inhibitory cortical networks in human amblyopia. Vision Research 45(21): 2810-2819.

 

*Corresponding author; email: izzuddin.hairol@ukm.edu.my

 

 

 

 

 

previous