Sains Malaysiana 48(10)(2019): 2257–2264

http://dx.doi.org/10.17576/jsm-2019-4810-22

 

Inspirasi Antena Metabahan yang Boleh Dikonfigurasi untuk Komunikasi 5G

(Metamaterial Antenna Inspiration That Can Be Configured for 5G Communication)

 

MOHAMMAD RASHED IQBAL FARUQUE1, MD. MEHEDI HASAN1, MUHAMAD ROSZAINI ROSLAN1*, MOHAMMAD TARIQUL ISLAM2 & SHARIFAH MASTURA SYED ABDULLAH1

 

1Space Science Centre (ANGKASA), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

2Centre of Advanced Electronics and Communication Engineering, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Received: 14 February 2019/Accepted: 9 August 2019

 

ABSTRAK

Perkembangan lalu lintas dalam sistem komunikasi tanpa wayar telah menarik banyak pihak menumpukan perhatian kepada spektrum jalur lebar luas dalam gelombang frekuensi millimeter yang merupakan keperluan komunikasi generasi kelima (5G). Inspirasi antena yang boleh dikonfigurasi frekuensinya berasaskan metabahan dicadangkan untuk komunikasi 5G. Ia terdiri daripada garisan suapan lurus ekakutub dengan dua resonator cincin yang berpecah dua (DSRR). DSRR dibangunkan oleh resonator cincin berpecah luar dan dalam dengan jalur logam tembaga E-bentuk terbalik yang dihubungkan dengan resonator cincin luar. Teknik Integrasi Terhad berasaskan simulator elektromagnet CST Microwave Studio digunakan untuk reka bentuk dan kajian berangka. Pulangan Kerugian (S11) menunjukkan resonan dalam 32.08 GHz, 35.07 GHz, dan 41.60 GHz. Prestasi antena yang boleh dikonfigurasi dicadangkan dianalisis dengan mengaktifkan atau menyahaktifkan DSRR. Walau bagaimanapun, metabahan yang direka menunjukkan ciri-ciri lengan kiri, padatan dalam ukuran dan lebih bersesuaian untuk aplikasi gelombang tanpa wayar 5G.

Kata kunci: Aplikasi 5G; konfigurasi antena; metabahan lengan kiri

 

ABSTRACT

Traffic development in the wireless communication system has attracted many parties concentrating on a broad bandwidth spectrum in the wave of frequency millimeters which is a fifth generation communication requirement (5G). Inspired antennae that can be configured by its own metamaterial is suggested for 5G communication. It consists of a straight feed line monopole with two resonator rings that split to two (DSRR). DSRR was developed by resonator the external split ring and in with the brass metal stripe of an overturned E-form linked to the resonator of the outer ring. Limited Integration techniques based on electromagnet CST Microwave Studio is used for numerical design and investigation. The Return of Loss (S11) showed a resonant in 32.08 GHz, 35.07 GHz and 41.60 GHz. The antenna performance that can be configured is analyzed by activating or deactivating DSRR. However, metamaterial designed shows the characteristics of the left arm, a measure in measurements and is more appropriate for the 5G wireless wave application.

Keywords: Antenna configuration; left handed metamaterial; 5G applications

REFERENCES

Cao, Z., Ma, Q., Smolders, A.B., Jiao, Y., Wale, M.J., Oh, C.W., Wu, H. & Koonen, A.M.J. 2016. Advanced integration techniques on broadband millimeter-wave beam steering for 5G wireless networks and beyond. IEEE Journal of Quantum Electronics 52(1): 0600620.

Dadgarpour, A., Sorkherizi, M.S., Kishk, A.A. & Denidni, T.A. 2016. Single-element antenna loaded with artificial Mu-near-zero structure for 60 GHz MIMO applications. IEEE Transactions on Antennas and Propagation 64(12): 5012-5019.

Ge, L., Yang, X., Zhang, D., Li, M. & Wong, H. 2016. Polarization reconfigurable magneto-electric dipole antenna for 5G WiFi. IEEE Antennas and Wireless Propagation Letters 16: 1504-1507.

Hao, Z.C., Fan, K. & Wang, H. 2017. A planar polarization-reconfigurable antenna. IEEE Transactions on Antennas and Propagation 65(4): 1624-1632.

Hasan, M.M., Faruque, M.R.I. & Islam, M.T. 2017. Inverse E-shape chiral metamaterial for long distance telecommunication. Microwave and Optical Technology Letters 59: 1772-1776.

Hasan, M.M., Faruque, M.R.I., Islam, S.S. & Islam, M.T. 2016. A new compact double-negative miniaturized metamaterial for wideband operation. Materials 9(10): 830.

Li, M. & Luk, K.M. 2015. Wideband magneto-electric dipole antenna for 60-GHz millimetre-wave communications. IEEE Transactions on Antennas and Propagation 63(7): 3276-3279.

Liu, H., Wang, B.Z. & Shao, W. 2007. Dual band bi-directional pattern reconfigurable fractal patch antenna for millimetre wave application. Journal of Infrared, Millimeter and Terahertz Waves 28: 25-31.

Mirzaei, H. & Eleftheriades, G.V. 2011. A compact frequency-reconfigurable metamaterial inspired antenna. IEEE Transactions on Antennas and Propagation 10: 1154-1157.

Roh, W., Seol, J.Y., Park, J., Lee, B., Lee, J., Kim, Y., Cho, J., Cheun, K. & Aryanfar, F. 2014. Millimeter-wave beamforming as an enabling technology for 5G cellular communications: Theoretical feasibility and prototype results. IEEE Communications Magazine 52(2): 106-113.

Smith, D.R., Padilla, W.J., Vier, D.C., Nemat-Nasser, S.C. & Schultz, S. 2000. Composite medium with simultaneously negative permeability and permittivity. Physical Review Letters 84: 4184-4187.

Veselago, V.G. 1968. The electrodynamics of substances with simultaneously negative values of ε and μ. Soviet Physics Uspekhi. 10: 509-514.

Yan, S. & Vandenbosch, G.A.E. 2016. Radiation pattern reconfigurable wearable antenna based on metamaterial structure. IEEE Transactions on Antennas and Propagation 15: 1715-1718.

Zhang, H.B., Ban, Y.L., Qiang, Y.F., Guo, J. & Yu, Z.F. 2017. Reconfigurable loop antenna with two parasitic grounded strips for WWAN/LTE unbro-ken-metal-rimmed smartphones. IEEE Access 5: 4853-4858.

 

*Corresponding author; email: mrr@ukm.edu.my

 

 

 

 

previous