Sains Malaysiana 48(1)(2019): 1–6

http://dx.doi.org/10.17576/jsm-2019-4801-01

 

Gastric Emptying and the Enzymatic Activity in the Stomach of Amphiprion ocellaris Fed on Artificial Diet

(Pengosongan Perut dan Aktiviti Enzim dalam Perut Amphiprion ocellaris yang Diberi Diet Buatan)

 

MEI LING KHOO1, SIMON KUMAR DAS1,2* & MAZLAN ABD. GHAFFAR3

 

1Marine Ecosystem Research Centre (EKOMAR) Faculty of Science and Technology, Universiti

Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

2School of Environmental and Natural Resource Sciences, Faculty of Science and Technology, Universiti

Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

3Institute of Oceanography and Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus,

Terengganu Darul Iman, Malaysia

 

Received: 15 September 2017/Accepted: 20 August 2018

 

ABSTRACT

This study aims to elucidate the gastric emptying process of clownfish fed on artificial diet using two gastric evacuation models and to determine the pepsin activity in the digestion process in relation to feeding time. Regression analysis was used to evaluate the adequacy of 2 models; Anderson’s [St = So(1-So(α-1)ρ(1-α)t)1/(1-α) + ξ ] and Grove’s model [St = (Soα – αKt)1/α ], in describing the gastric emptying rate. Grove’s model provided a better fit with higher r2 value, with the calculated parameters of maximum meal size at time 0 (S0) = 0.195 g and gastric emptying rate (K) = 0.0165 g h-1. There was no initial delay phase as predicted and the evacuation followed a curve. Pepsin activity in the stomach showed rapid responses to food intake, where activity was detected at 1 h after feeding and reached its peak at 2 h after feeding. Pepsin activity decreased since then until the 12th h after feeding where it reached the lowest point. An increase of pepsin activity was detected later, where a small boost was detected at 24 h after feeding to digest the remaining food item in the stomach before the pepsin secretion decreased and maintained at pre-feeding level. Fast response of digestive enzyme in stomach implied that clownfish is equipped to utilize infrequent and irregular meals effectively.

 

Keywords: Amphiprion ocellaris; evacuation model; gastric digestion, pepsin activity

 

ABSTRAK

Kajian ini bertujuan untuk menjelaskan proses pengosongan perut ikan badut yang diberi diet buatan dengan menggunakan dua model pengosongan gastrik dan untuk menentukan hubungan antara aktiviti enzim pepsin dalam proses pencernaan dengan masa selepas makan. Analisis regresi digunakan untuk menentukan ketepatan dua model; model Anderson [St = So(1-So(α-1)ρ(1-α)t)1/(1-α) + ξ] dan model Grove [St = (Soα – αKt)1/α], dalam penentuan kadar pengosongan perut selepas makan. Model Grove lebih sesuai kerana mempunyai nilai r yang lebih tinggi dengan parameter yang dikira merupakan saiz hidangan maksimum pada masa 0(S0) = 0.195 g dan kadar pengosongan perut (K) = 0.0165 g per jam. Tiada fasa lewat pada permulaan proses penghadaman seperti yang dianggarkan dan pengosongan perut adalah sejajar dengan lengkungan. Aktiviti enzim pepsin dalam perut menunjukkan tindak balas yang pantas terhadap pengambilan makanan dengan aktiviti pepsin dikesan seawal 1 jam selepas makan dan mencapai kemuncaknya pada masa 2 jam selepas makan. Aktiviti pepsin kemudiannya semakin menurun sehingga mencapai tahap terendahnya pada jam 12 selepas makan. Selepas itu, aktiviti pepsin meningkat semula dan terdapat rangsangan kecil dalam rembesan enzim yang dikesan pada 24 jam selepas makan. Aktiviti pepsin kemudiannya menurun semula kepada tahap sebelum makan. Tindak balas yang cepat terhadap pengambilan makanan menunjukkan ikan badut mampu menghadapi keadaan pembekalan makanan yang tidak menentu dengan berkesan.

 

Kata kunci: Aktiviti pepsin; Amphiprion ocellaris; model pengosongan; penghadaman gastrik

REFERENCES

Andersen, N.G. 1999. The effects of predator size, temperature and prey characteristics on gastric evacuation in whiting. Journal of Fish Biology 54: 287-301.

Andersen, N.G. 1998. Effect of meal size on gastric evacuation in whiting. Journal of Fish Biology 52: 743-755.

Bradford, M. 1976. A rapid and sensitive method for quantification of microgram quantities of protein utilizing the principle of protein dye-binding. Analytical Biochemistry 72: 248-254.

Caruso, G., Denaro, M.G. & Genovese, L. 2008. Temporal changes in digestive enzyme activities in gastrointestinal tract of Europoean eel (Anguilla anguilla) (Linneo 1758) following feeding. Marine and Freshwater Behaviour and Physiology 41: 215-228.

Cato, J.C. & Brown, C.L. 2003. Marine Ornamental Species: Collection, Culture, and Conservation. Ames: Iowa State Press.

Chapman, F.A., Fitz-Coy, S.A., Thunberg, E.M. & Adams, C.M. 1997. United States of America trade in ornamental fish. Journal of the World Aquaculture Society 28: 1-10.

Einarsson, S., Davies, P.S. & Talbot, C. The effect of feeding on the secretion of pepsin, trypsin and chromotrypsin in the Atlantic salmon, Salmo salar L. Fish Physiology and Biochemistry 15: 439-446.

Fänge, R. & Grove, D.J. 1979. Digestion in fish physiology. Volume VIII. In Bioenergetics and Growth, edited by Hoar, W.S., Randall, D.J. & Brett, J.R. Orlando: Academic Press Inc. pp 172-241.

Fautin, D.G. & Allen, G.R. 1992. Anemone Fishes and their Host Sea Anemones, a Guide for Aquarists and Divers. Perth: Western Australian Museum. p. 160.

Grove, D.J., Genna, R., Paralika, V., Boraston, J., Hornyold, M.G. & Siemens, R. 2001. Effects of dietary water content on meal size, food intake, digestion and growth in turbot, Scophthalmus maximus (L.). Aquaculture Research 32: 433-442.

Grove, D.J., Moctezuma, M.A., Flett, H.R.J., Foott, J.S., Watson, T. & Flowerdew, M.W. 1985. Gastric emptying and the return of appetite of juvenile turbot, Scopthalmus maximus L. fed on artificial diets. Journal of Fish Biology 26: 339-354.

Hashim, M., Abidin, D.A.Z., Simon, K.D. & Mazlan, A.G. 2018. Gastric emptying and food consumption of Scatophagus argus. AACL Bioflux 11(1): 278-287.

Hughes, S.G. & Barrows, R. 1990. Measurement of the abilities of cultured fishes to moisten their digesta. Comparative Biochemistry and Physiology A96: 109-111.

Jones, R. 1974. The rate of elimination of food from the stomachs of haddock Melanogrammus eaeglefinus, cod, Gadus morhua and whiting Merlangius merlangus. Journal du Conseil/ Conseil Permanent International pour l’Exploration de la Mer 35(3): 225-243.

Khoo, M.L. & Mazlan, A.G. 2014. Estimation of gastric emptying time (GET) in clownfish (Amphiprion ocellaris) using x-radiography technique. AIP Proceedings 1614: 624-628.

Kristiansen, H.R. & Rankin, J.C. 2001. Discrimination between endogenous and exogenous water sources in juvenile rainbow trout fed extruded dry feed. Aquatic Living Resources 14: 359-366.

Liew, H.J., Ambak, M.A. & Abol-Munafi, A.B. 2006. Embryonic development of clownfish Amphiprion ocellaris under laboratory conditions. Journal of Sustainable Science and Management 1(1): 64-73.

Maison, K.A. & Graham, K.S. 2015. Status review report: Orange clownfish (Amphiprion percula). Report to National Marine Fisheries Service, Office of Protected Resources. p. 67.

Mazlan, A.G. 2001. Food consumption patterns and dietary digestibility of whiting (Merlangius merlangus L.) fed in laboratory conditions. Ph.D Thesis, University of Wales Bangor (Unpublished).

Mazumber, S.K., Mazlan, A.G. & Simon, K.D. 2015. The effects of temperature on gastric emptying time of Malabar Blood Snapper (Lutjanus malabaricus, Bloch & Schneider 1801) using X-radiography technique. AIP Conference Proceedings 1678: 020032-1-023332-4.

McCarthy, I.D., Houlihan, D.F., Carter, C.G. & Moutou, K. 1993. Variation in individual food consumption rates of fish and its implications for study of fish nutrition and physiology. Proceedings of the Nutrition Society 52: 427-436.

Moumita, D., Mazlan, A.G. & Simon, K.D. 2014. Temperature effect on gastric emptying time of hybrid grouper (Epinephelus spp.). AIP Conf. Proc. 1614: 616-618.

Moumita, D., Mazlan, A.G., Bakar, Y. & Simon, K.D. 2016. Effect of temperature and diet on growth and gastric emptying time of the hybrid, Epinephelus fuscoguttatus ♀ × E. lanceolatus ♂. Aquaculture Reports 4: 118-124.

Myers, R. 1999. Miconesian Reef Fish: A Field Guide for Divers and Aquarists. Barrigada: Coral Graphics.

Onishi, T., Murayama, S. & Takeuchi, M. 1976. Sequence of digestive enzyme levels in carp after feeding. III. Responses of protease and amylase to twice-a-day feeding. Bulletin of the Japanese Society for the Science of Fish 42: 921-929.

Onishi, T., Murayama, S. & Takeuchi, M. 1973a. Sequence of digestive enzyme levels in carp after feeding. I. Amylase and protease of intestinal content, hepatopancreas and gallbladder. Bull. Tokai. Reg. Res. Lab. 75: 23-31.

Onishi, T., Murayama, S. & Takeuchi, M. 1973b. Sequence of digestive enzyme levels in carp after feeding. II. Protease in activated and zymogen forms of intestine, hepatopancreas, gallbladder and spleen. Bull. Tokai. Reg. Res. Lab. 75: 33-38.

Palanisamy, K. 1989. Studies on the digestive enzymes of the cultivable grey mullet Liza parsia (Hamilton Buchanan, 1822). Ph.D. Thesis, Cochin University of Science and Technology (Unpublished).

Riche, M., Haley, D.I., Oetker, M., Garbrecht, S. & Garling, D.L. 2004. Effect of feeding frequency on gastric evacuation and the return of appetite in tilapia Oreochromis niloticus (L.) Aquaculture 234: 657-673.

Ruohonen, K., Grove, D.J. & MclLroy, J.T. 1997. The amount of food ingested in a single meal by rainbow trout offered chopped herring, dry and wet diets. Journal of Fish Biology 51(1): 93-105.

Ruohonen, K., Vielma, J. & Grove, D.J. 1998. Comparison of nutrient loss into the water from rainbow trout culture based on fresh Baltic herring, moist and dry diets. Aquaculture International 6: 441-450.

Sano, M., Shimizu, M. & Nose, Y. 1984. Food Habits of Teleostean Reef Fishes in Okinawa Island, Southern Japan. Japan: University of Tokyo Press.

Sin, T.M., Teo, M.M., Ng, P.K.L., Chou, L.M. & Khoo, H.W. 1994. The damselfishes (Pisces: Osteichthyes: Pomacentridae) of Peninsular Malaysia and Singapore: Systematic, ecology and conservation. Hydrobiologia 285: 49-58.

Smith, L.S. 1989. Digestive functions in teleost fishes. In Fish Nutrition. 2nd ed., edited by Halver, J.E. New York: Academic Press. pp. 405-407.

Smit, H. 1968. Gastric secretion in the lower vertebrates and birds. In Handbook of Physiology Section 6: A1imentary Canal, edited by Code, C.F. Washington: American Physiological Society. pp. 2791-2805.

Takii, K., Shimeno, S. & Takeda, M. 1985. Changes in digestive enzyme activities in ee1 after feeding. Bulletin of the Japanese Society for the Science of Fish 51(12): 2027-2031.

Uys, W., Hecht, T. & Walters, M. 1987. Changes in digestive enzyme activities of Clarias gariepinus (Pisces: Clariidae) after feeding. Aquaculture 63: 243-250.

Wabnitz, C., Taylor, M., Green, E. & Razak, T. 2003. From Ocean to Aquarium. The Global Trade in Marine Ornamental Species. Biodiversity Series 17. Cambridge: UNEP-WCMC.

Western, J.R.H. & Jennings, J.B. 1970. Histochemical demonstration of hydrochloric acid in the gastric tubules of teleosts using an in vivo Prussian b1ue technique. Comparative Biochemistry and Physiology 35: 879-884.

Windell, J.T., Hubbard, J.T. & Horak, D.L. 1972. Rate of gastric evacuation in rainbow trout fed three pelleted diets. Progressive Fish-Culturist 34: 156-159.

Worthington, V. 1993. Worthington Enzyme Manual. Enzymes and Related Biochemicals Worthington Chemical. New Jersey: United States. p. 399.

 

*Corresponding author; email: skdas_maa@yahoo.com