Sains Malaysiana 48(1)(2019): 191–197

http://dx.doi.org/10.17576/jsm-2019-4801-22

 

Measurement of Neutron Flux and Gamma Dose Rate Distribution Inside a Water Phantom for Boron Neutron Capture Therapy Study at Dalat Research Reactor

(Pengukuran Neutron Fluks dan Pengagihan Kadar Dos Gama dalam Fantom Air untuk Kajian Terapi Boron Neutron Tertawan di Reaktor Penyelidikan Dalat)

 

TRINH THI TU ANH1*, PHAM DANG QUYET1, MAI NGUYEN TRONG NHAN2 & PHAM NGOC SON3

 

1Dalat University, 01 Phu Dong Thien Vuong, Dalat, Vietnam

 

2Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea

 

3Nuclear Research Institute, 01 Phu Dong Thien Vuong, Dalat, Vietnam

 

Received: 7 June 2018/Accepted: 7 September 2018

 

ABSTRACT

Exposure dose rate to the tumor and surrounding cells during neutron beam irradiation in Boron Neutron Capture Therapy (BNCT) comes not only from heavy charged particles produced from the 10B(n,α)7Li nuclear reaction, but also from neutron-induced reactions with other biological elements in living tissue, as well as from gamma rays leaked from the reactor core. At Dalat Research Reactor, Vietnam, the neutron and gamma dose rate distribution inside a water phantom were measured by using activation method and Thermoluminescent Dosimeter (TLD) detector, respectively. The results showed that effective thermal neutron dose rate along the center line of the water phantom had a maximum value of 479 mSv h-1 at 1 cm in phantom and then decreases rapidly to 4.87 mSv h-1 at 10 cm. The gamma dose rate along the center line of the water phantom also reach its maximum of 4.31 mSv h-1 at 1 cm depth and decreases to 1.16 mSv h-1 at 10 cm position. The maximum biological tumor dose rate was 1.74 Gy-eq h-1, not high enough to satisfy the treatment requirement of brain tumors. However, the results of this work are important in supporting of BNCT study in the upcoming stages at Dalat Research Reactor.

 

Keywords: BNCT; dose rate; TLD detector; thermal neutron flux; water phantom

 

ABSTRAK

Kadar dos pendedahan kepada tumor dan sel sekitarnya semasa pancaran sinaran neutron dalam Terapi Boron Neutron Tertawan (BNCT) datang bukan sahaja daripada zarah berat bercas yang dihasilkan daripada tindak balas nuklear 10B(n)7Li, tetapi juga daripada tindak balas neutron-teraruh daripada unsur biologi lain dalam tisu hidup, selain daripada sinar gama yang bocor daripada teras reaktor. Di Reaktor Penyelidikan Dalat, Vietnam, kadar pengagihan dos neutron dan gama dalam fantom air diukur masing-masing menggunakan kaedah pengaktifan dan pengesan Thermoluminescent Dosimeter (TLD). Keputusan menunjukkan bahawa kadar dos haba neutron yang berkesan sepanjang garis tengah fantom air mempunyai nilai maksimum 479 mSv h-1 pada 1 cm dalam phantom dan kemudian menurun dengan pantas kepada 4.87 mSv h-1 pada 10 cm. Kadar dos gama sepanjang garis tengah fantom air juga mencapai tahap maksimum 4.31 mSv h-1 pada kedalaman 1 cm dan menurun ke 1.16 mSv h-1 pada kedudukan 10 cm. Kadar dos maksimum tumor biologi adalah 1.74 Gy-eq h-1 namun tidak cukup tinggi untuk memenuhi keperluan rawatan tumor otak. Walau bagaimanapun, keputusan kajian ini adalah penting dalam menyokong pengajian BNCT pada peringkat akan datang di Reaktor Penyelidikan Dalat.

 

Kata kunci: BNCT; fantom air; fluks haba neutron; kadar dos; pengesan TLD

REFERENCES

Akan, Z., Türkmen, M., Çak?r, T., Reyhancan, I.A., Çolak, Ü., Okka, M. & K?z?ltaş, S. 2015. Modification of the radial beam port of ITU TRIGA Mark II research reactor for BNCT applications. Appl. Radiat. Isot. 99: 110-116.

Akhlaghi, P., Rafat-Motavalli, L. & Miri-Hakimabad, S.H. 2013. The measurements of thermal neutron flux distribution in a paraffin phantom. Pramana - J. Phys. 80(5): 873-885.

Bavarnegin, E., Sadremomtaz, A., Khalafi, H. & Kasesaz, Y. 2016. Measurement of in-phantom neutron flux and gamma dose in Tehran research reactor boron neutron capture therapy beam line. J. Cancer Res. Ther. 12(2): 826-829.

Bortolussi, S. & Altieri, S. 2007. Thermal neutron irradiation field design for boron neutron capture therapy of human explanted liver. Med. Phys. 34(12): 4700-4705.

Bortolussi, S., Protti, N., Ferrari, M., Postuma, I., Fatemi, S., Prata, M., Ballarini, F., Carante, M.P., Farias, R., González, S.J., Marrale, M., Gallo, S., Bartolotta, A., Iacoviello, G., Nigg, D. & Altieri, S. 2018. Neutron flux and gamma dose measurement in the BNCT irradiation facility at the TRIGA reactor of the University of Pavia. Nucl. Instrum. Methods Phys. Res. B 414: 113-120.

Dao-wen, C., Jing-bin, L., Dong, Y., Hui-dong, W. & Ke-yan, M. 2012. Improvement of the moderator’s thermalization efficiency for 14 MeV neutrons in boron neutron capture therapy. J. Radioanal. Nucl. Chem. 292(3): 1085-1088.

Glascock, M.D. 1998. Activation analysis. In Instrumental Multi-Element Chemical Analysis, edited by Alfassi, Z.B. Dordrecht: Springer.

Goorley, J.T., Kiger, W.S. & Zamenhof, R.G. 2002. Reference dosimetry calculations for neutron capture therapy with comparison of analytical and voxel models. Med. Phys. 29(2): 145-156.

Horiguchi, H., Sato, T., Kumada, H., Yamamoto, T. & Sakae, T. 2014. Estimation of relative biological effectiveness for boron neutron capture therapy using the PHITS code coupled with a microdosimetric kinetic model. J. Radiat. Res. 56(2): 382-390.

IAEA. 2016. History, Development and Future of TRIGA Research Reactor. IAEA, Vienna, Technical Report Series No. 482, 131.

IAEA. 2001. Use of Research Reactors for Neutron Activation Analysis. IAEA, Vienna, IAEA-TECDOC-1215.

Jarahi, H., Kasesaz, Y. & Saleh-Koutahi, S.M. 2016. Evaluation of the effective dose during BNCT at TRR thermal column epithermal facility. Appl. Radiat. Isot. 110: 134-137.

Kwon, S.G., Kim, K.E., Ha, C.W., Moon, P.S. & Yook, C.C. 1980. Calculation of neutron and gamma-ray flux-to-dose-rate conversion factors. J. Nucl. Eng. Technol. 12(3): 171-179.

Marashi, M.K. 2000. Analysis of absorbed dose distribution in head phantom in boron neutron capture therapy. Nucl. Instrum. Methods Phys. Res. A 440(2): 446-452.

Matsumoto, T. 1996. Design of neutron beams for boron neutron capture therapy for TRIGA Reactor. Prog. Nucl. Sci. Technol. 33(2): 171-178.

Maučec, M. 2001. Feasibility of the Utilization of BNCT in Thermalizing Column of TRIGA Reactor. In Frontiers in Neutron Capture Therapy. 1st ed., edited by Hawthorne, M.F., Shelly, K. & Wiersema, R.J. Boston, MA: Springer.

Moghaddasi, L. & Bezak, E. 2017. Development of an integrated Monte Carlo model for glioblastoma multiforme treated with boron neutron capture therapy. Sci. Rep. 7(1): 7069.

Nagels, S., Hampel, G., Kratz, J.V., Aguilar, A.L., Minouchehr, S., Otto, G., Schmidberger, H., Schütz, C., Vogtländer, L. &Wortmann, B. 2009. Determination of the irradiation field at the research reactor TRIGA Mainz for BNCT. Appl. Radiat. Isot. 67(7-8): S242-S246.

 Nguyen, K.C., Huynh, T.N., Le, V.V. & Luong, B.V. 2012. The role of a research reactor in the National Nuclear Energy Programme in Vietnam: Present and future. In Research Reactors: Safe Management and Effective Utilization. Proceedings of an International Conference, IAEA, Morocco.

Perks, C.A., Mill, A.J., Constantine, G., Harrison, K.G. & Gibson, J.A.B. 1988. A review of boron neutron capture therapy (BNCT) and the design and dosimetry of a high-intensity, 24 keV, neutron beam for BNCT research. Br. J. Radiol. 61(732): 1115-1126.

Sauerwein, W.A.G., Wittig, A., Moss, R. & Nakagawa, Y. 2012. Neutron Capture Therapy. Springer, Berlin, Heidelberg.

Singh, V.P., Badiger, N.M. & Vega-Carrillo, H.R. 2015. Neutron kerma coefficients of compounds for shielding and dosimetry. Ann. Nucl. Ener. 75: 189-192.

Takada, K., Isobe, T., Kumada, H., Yamamoto, T., Shida, K., Kobayashi, D., Mori, Y., Sakurai, H. & Sakae, T. 2014. Evaluation of the radiation dose for whole body in boron neutron capture therapy. Prog. Nucl. Sci. Technol. 4: 820-823.

Tan, V.H. & Son, P.N. 2016. Thermal neutron radiative capture cross-section of 186W(n, γ)187W reaction. J. Phys. Conf. Ser. 726: 012004.

White, D.R., Griffith, R.V. & Wilson, I.J. 1992. Journal of the International Commission on Radiation Units and Measurements 24(1): 1-4.

Whittemore, W.L. 1992. A compact triga reactor for Boron Neutron Capture Therapy. In Progress in Neutron Capture Therapy for Cancer. 1st ed., edited by Allen, B.J., Moore, D.E. & Harrington, B.V. Boston, MA: Springer.

Yamamoto, T., Matsumura, A., Yamamoto, K., Kumada, H., Shibata, Y. & Nose, T. 2002. In-phantom two-dimensional thermal neutron distribution for intraoperative boron neutron capture therapy of brain tumours. Phys. Med. Biol. 47(14): 2387-2396.

 

*Corresponding author; email: anhttt@dlu.edu.vn

 

 

 

 

 

previous