Sains Malaysiana 48(1)(2019): 199–208

http://dx.doi.org/10.17576/jsm-2019-4801-23

 

Applicability of Iron (III) Trimesic (Fe-BTC) to Enhance Lignin Separation from Pulp and Paper Wastewater

(Kebolehgunaan Besi (III) Trimesik (Fe-BTC) untuk Peningkatan Pemisahan Lignin daripada Air Sisa Pulpa dan Kertas)

 

BHUCKCHANYA PANGKUMHANG1,2, PANITAN JUTAPORN1,2, KWANNAPAT SORACHOTI3,

PUMMARIN KHAMDAHSAG4,5 & VISANU TANBOONCHUY1,2,5*

 

1Department of Environmental Engineering, Faculty of Engineering, Khon Kaen University, Khon Kaen 40002, Thailand

 

2Research Center for Environmental and Hazardous Substance Management (EHSM), Khon Kaen University, Khon Kaen 40002, Thailand

 

3International Programs in Hazardous Substance and Environmental Management, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand

 

4Environmental Research Institute, Chulalongkorn University, Bangkok 10330, Thailand

 

5Research Program on Development of Appropriate Technologies for Coloring Agent Removal from Textile Dyeing, Pulp & Paper, Sugar Industries for Sustainable Management Center of Excellence on Hazardous Substance Management (HSM), Chulalongkorn University, Bangkok 10330, Thailand

 

Received: 26 April 2018/Accepted: 29 August 2018

 

ABSTRACT

This study assesses the application of iron (III) trimesic (Fe-BTC) as a coagulant-flocculant to remove lignin from pulp and paper (P&P) wastewater. In this research, Fe-BTC was characterized by X-ray diffraction (XRD), while the functional groups of Fe-BTC and lignin were analyzed by Fourier transform infrared (FT-IR) spectroscopy. Scanning electron microscopy (SEM) determined the surface morphology of the material. The influential parameters affecting lignin removal included the initial lignin concentration, the quantity of Fe-BTC, and the pH which were investigated using a single batch mixing system. The experimental and optimum operational conditions were determined using Box-Behnken design (BBD). Fe-BTC dosage plays a major role in efficiently removing lignin, while the pH and initial lignin concentration had no significant effect. Greater than 80% removal efficiency could be achieved with a Fe-BTC dosage as low as 2 g/L. The proposed mechanism of lignin aggregation was that Fe molecules were released from unsaturated sites of Fe-BTC and then formed new bonds with O in the methoxy lignin group. The interaction between Fe-BTC and lignin was π-π stacking (benzene ring), which explains the formation of F-O bonds in the lignin sludge.

 

Keywords: Box-Behnken design; Fe-BTC; lignin; metal-organic frameworks; MOFs; pulp and paper

 

ABSTRAK

Kajian ini menilai penggunaan besi (III) trimesik (Fe-BTC) sebagai bahan penggumpal untuk menyingkirkan lignin daripada air sisa pulpa dan kertas (P&P). Dalam kajian ini, Fe-BTC dicirikan oleh pembelauan sinar-x (XRD) manakala kumpulan fungsian Fe-BTC dan lignin dianalisis melalui spektroskopi transformasi Fourier inframerah (FT-IR). Mikroskop Elektron Imbasan (SEM) menentukan morfologi permukaan untuk bahan. Parameter penting yang menyebabkan penyingkiran lignin adalah termasuk kepekatan pemula lignin, kuantiti Fe-BTC dan pH yang dikaji menggunakan sistem campuran kelompok tunggal. Syarat uji kaji dan pengoperasian optimum telah ditentukan dengan menggunakan reka bentuk Box-Behnken (BBD). Dos Fe-BTC memainkan peranan penting dalam menyingkirkan lignin dengan cekap, manakala pH dan kepekatan pemula lignin tidak menunjukkan kesan yang ketara. Lebih daripada 80% kecekapan penyingkiran boleh dicapai dengan dos Fe-BTC serendah 2 g/L. Mekanisme cadangan daripada pengagregatan lignin adalah bahawa Fe molekul dibebaskan dari unsatured tapak Fe-BTC dan kemudian membentuk ikatan baharu dengan O dalam kumpulan lignin metoksi. Interaksi antara Fe-BTC dan lignin ialah susunan π-π (gelang benzena) yang menjelaskan pembentukan ikatan F-O dalam enap-cemar lignin.

 

Kata kunci: Fe-BTC; lignin; MOFs; pulpa dan kertas; rangka kerja logam-organik; reka bentuk Box-Behnken

REFERENCES

Ali, M. & Sreekrishnan, T.R. 2001. Aquatic toxicity from pulp and paper mill effluents: A review. Advances in Environmental Research 5(2): 175-196.

Andersson, K.I., Eriksson, M. & Norgren, M. 2012. Lignin removal by adsorption to fly ash in wastewater generated by mechanical pulping. Industrial and Engineering Chemistry Research 51(8): 3444-3451.

Archariyapanyakul, P., Pangkumhang, B., Khamdahsag, P. & Tanboonchuy, V. 2017. Synthesis of silica-supported nanoiron for Cr(VI) removal: Application of Box-Behnken Statistical Design (BBD). Sains Malaysiana 46(4): 655-665.

Ashrafi, O., Yerushalmi, L. & Haghighat, F. 2015. Wastewater treatment in the pulp-and-paper industry: A review of treatment processes and the associated greenhouse gas emission. Journal of Environmental Management 158: 146-157.

Autie-Castro, G., Autie, M.A., Rodríguez-Castellón, E., Aguirre, C. & Reguera, E. 2015. Cu-BTC and Fe-BTC metal-organic frameworks: Role of the materials structural features on their performance for volatile hydrocarbons separation. Colloids and Surfaces A: Physicochemical and Engineering Aspects 481: 351-357.

Cassey, T.L., Yaser, A., Shazwan, A.S. & Hairul, M.A. 2014. Current review on the coagulation/flocculation of lignin containing wastewater. International Journal of Waste Resources 4(03): 2-7.

Ciputra, S., Antony, A., Phillips, R., Richardson, D. & Leslie, G. 2010. Comparison of treatment options for removal of recalcitrant dissolved organic matter from paper mill effluent. Chemosphere 81(1): 86-91.

Deng, Y., Feng, X., Zhou, M., Qian, Y., Yu, H. & Qiu, X. 2011. Investigation of aggregation and assembly of alkali lignin using iodine as a probe. Biomacromolecules 12(4): 1116- 1125.

Elwakeel, K.Z. & Guibal, E. 2015. Selective removal of Hg(II) from aqueous solution by functionalized magnetic-macromolecular hybrid material. Chemical Engineering Journal 281: 345-359.

Fang, Y., Wen, J., Zeng, G., Jia, F., Zhang, S., Peng, Z. & Zhang, H. 2017. Effect of mineralizing agents on the adsorption performance of metal-organic framework MIL-100(Fe) towards chromium(VI). Chemical Engineering Journal 337: 532-540.

García, E., Medina, R., Lozano, M., Hernández Pérez, I., Valero, M. & Franco, A. 2014. Adsorption of azo-dye orange II from aqueous solutions using a metal-organic framework material: Iron-benzenetricarboxylate. Materials 7(12): 8037-8057.

Hameed, Y.T., Idris, A., Hussain, S.A., Abdullah, N., Man, H.C. & Suja, F. 2018. A tannin-based agent for coagulation and flocculation of municipal wastewater as a pretreatment for biofilm process. Journal of Cleaner Production 182: 198-205.

Hao, C., Li, J., He, Q., Zhou, Z., Guo, X., Wang, X., Gao, S. & Zhang, Y. 2016. Ultrasonic synthesis and properties of sodium lignosulfonate-grafted poly(acrylic acid-co-vinyl alcohol) composite superabsorbent polymer. Australian Journal of Chemistry 69: 1155-1161.

Hasan, Z. & Jhung, S.H. 2015. Removal of hazardous organics from water using metal-organic frameworks (MOFs): Plausible mechanisms for selective adsorptions. Journal of Hazardous Materials 283: 329-339.

Kaur, D., Bhardwaj, N.K. & Lohchab, R.K. 2018. A study on pulping of rice straw and impact of incorporation of chlorine dioxide during bleaching on pulp properties and effluents characteristics. Journal of Cleaner Production 170(X): 174-182.

Khan, N.A., Hasan, Z. & Jhung, S.H. 2013. Adsorptive removal of hazardous materials using metal-organic frameworks (MOFs): A review. Journal of Hazardous Materials 244- 245: 444-456.

Kiattisaksiri, P., Khamdahsag, P., Khemthong, P., Pimpha, N. & Grisdanurak, N. 2015. Photocatalytic degradation of 2,4-dichlorophenol over Fe-ZnO catalyst under visible light. Korean Journal of Chemical Engineering 32: 1578-1585.

Klapiszewski, Ł., Siwińska-Stefańska, K. & Kołodyńska, D. 2017a. Development of lignin based multifunctional hybrid materials for Cu(II) and Cd(II) removal from the aqueous system. Chemical Engineering Journal 330: 518-530.

Klapiszewski, Ł., Zdarta, J., Antecka, K., Synoradzki, K., Siwińska-Stefańska, K., Moszyński, D. & Jesionowski, T. 2017b. Magnetite nanoparticles conjugated with lignin: A physicochemical and magnetic study. Applied Surface Science 422: 94-103.

Lee, C.S., Robinson, J. & Chong, M.F. 2014. A review on application of flocculants in wastewater treatment. Process Safety and Environmental Protection 92(6): 489-508.

Lee, K.E., Morad, N., Teng, T.T. & Poh, B.T. 2012. Development, characterization and the application of hybrid materials in coagulation/flocculation of wastewater: A review. Chemical Engineering Journal 203: 370-386.

Mahmoodi, N.M., Abdi, J., Oveisi, M., Alinia Asli, M. & Vossoughi, M. 2018. Metal-organic framework (MIL-100 (Fe)): Synthesis, detailed photocatalytic dye degradation ability in colored textile wastewater and recycling. Materials Research Bulletin 100: 357-366.

Majano, G., Ingold, O., Yulikov, M., Jeschke, G. & Pérez- Ramírez, J. 2013. Room-temperature synthesis of Fe– BTC from layered iron hydroxides: The influence of precursor organisation. CrystEngComm. http://xlink.rsc. org/?DOI=c3ce41366g.

Moetaz ElSergany, Amimul Ahsan & Md. Maniruzzaman A. Aziz. 2015. Optimizing the performance of a paper mill effluent treatment. Sains Malaysiana 44(1): 101-106.

Naseem, A., Tabasum, S., Zia, K.M., Zuber, M., Ali, M. & Noreen, A. 2016. Lignin-derivatives based polymers, blends and composites: A review. International Journal of Biological Macromolecules 93: 296-313.

Norgren, M. & Edlund, H. 2014. Lignin: Recent advances and emerging applications. Current Opinion in Colloid and Interface Science 19(5): 409-416.

Nyman, V., Rose, G. & Ralston, J. 1986. The colloidal behaviour of kraft lignin and lignosulfonates. Colloids and Surfaces 21: 125-147.

Roopan, S.M. 2017. An overview of natural renewable bio-polymer lignin towards nano and biotechnological applications. International Journal of Biological Macromolecules 103: 508-514.

Sciortino, L., Alessi, A., Messina, F., Buscarino, G. & Gelardi, F.M. 2015. Structure of the FeBTC metal-organic framework: A model based on the local environment study. Journal of Physical Chemistry C 119(14): 7826-7830.

Sorachoti, K., Pangkumhang, B., Tanboonchuy, V., Tulaphol, S. & Grisdanurak, N. 2017. Reversible adsorption of metalworking fluids (MWFs) on Cu-BTC metal organic framework. Chinese Journal of Chemical Engineering 25(6): 768-774.

Sriprom, P., Neramittagapong, S., Lin, C., Wantala, K., Neramittagapong, A. & Grisdanurak, N. 2015. Optimizing chemical oxygen demand removal from synthesized wastewater containing lignin by catalytic wet-air oxidation over CuO/Al2O3catalysts. Journal of the Air and Waste Management Association 65(7): 828-836.

Teh, C.Y., Budiman, P.M., Shak, K.P.Y. & Wu, T.Y. 2016. Recent advancement of coagulation-flocculation and its application in wastewater treatment. Industrial and Engineering Chemistry Research 55(16): 4363-4389.

Tolod, K.R., Bajamundi, C.J.E., De Leon, R.L., Sreearunothai, P., Khunphonoi, R. & Grisdanurak, N. 2016. Visible light-driven photocatalytic hydrogen production using Cu-doped SrTiO3. Energy Sources, Part A: Recovery, Utilization and Environmental Effects 38(2): 286-294.

Wang, X., Wang, Y., Hou, H., Wang, J. & Hao, C. 2017. Ultrasonic method to synthesize glucan-g-poly(acrylic acid)/sodium lignosulfonate hydrogels and studies of their adsorption of Cu2+from aqueous solution. ACS Sustainable Chemistry and Engineering 5(8): 6438-6446.

Wang, X., Wu, F., Duan, Y., Wang, Y., Hao, C. & Ge, C. 2016. Lignin-assisted solid-phase synthesis of nano-CuO for a photocatalyst with excellent catalytic activity and high performance supercapacitor electrodes. RSC Advances 6(70): 65644-65653.

Wang, X., Zhang, Y., Hao, C., Dai, X., Zhu, F. & Ge, C. 2014. Ultrasonic synthesis and properties of a sodium lignosulfonate-grafted poly(acrylic acid-co-acryl amide) composite super absorbent polymer. New Journal of Chemistry 38(12): 6057-6063.

Wang, Y., Wang, X., Ding, Y., Zhou, Z., Hao, C. & Zhou, S. 2018. Novel sodium lignosulphonate assisted synthesis of well dispersed Fe3O4microspheres for efficient adsorption of copper (II). Powder Technology 325: 597-605.

Wang, Y., Zhu, L., Wang, X., Zheng, W., Hao, C., Jiang, C. & Wu, J. 2018. Synthesis of aminated calcium lignosulfonate and its adsorption properties for azo dyes. Journal of Industrial and Engineering Chemistry 61: 321-330.

Wei, N., Zhang, Z., Liu, D., Wu, Y., Wang, J. & Wang, Q. 2015. Coagulation behavior of polyaluminum chloride: Effects of pH and coagulant dosage. Chinese Journal of Chemical Engineering 23(6): 1041-1046.

Zhan, X., Gao, B., Yue, Q., Liu, B., Xu, X. & Li, Q. 2010. Removal natural organic matter by coagulation-adsorption and evaluating the serial effect through a chlorine decay model. Journal of Hazardous Materials 183(1-3): 279-286.

Zhu, B., Yu, X., Jia, Y., Peng, F., Sun, B., Zhang, M. & Huang, X. 2012. Iron and 1,3,5-benzenetricarboxylic metal-organic coordination polymers prepared by solvothermal method and their application in efficient As(V) removal from aqueous solutions. The Journal of Physical Chemistry C 116(V): 8601-8607.

 

*Corresponding author; email: visanu@kku.ac.th

 

 

 

 

previous