Sains Malaysiana 48(1)(2019): 7–13

http://dx.doi.org/10.17576/jsm-2019-4801-02

 

Effects of Lignosulfonates on Callus Proliferation and Shoot Induction of Recalcitrant Indica Rice

(Kesan Lignosulfonat ke atas Proliferasi Kalus dan Induksi Tunas Beras Indica Rekalsitran)

LEE-YOON LOW1, JANNA ONG ABDULLAH1, CHIEN-YEONG WEE2, ROGAYAH SEKELI2, CHUN-KEAT TAN3, JIUN-YAN LOH4 & KOK-SONG LAI1*

 

1Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia

 

2Biotechnology and Nanotechnology Research Centre, MARDI Headquarters, Persiaran MARDI-UPM, 43400 Serdang, Selangor Darul Ehsan, Malaysia

 

3Agro-Biotechnology Institute Malaysia (ABI), National Institutes of Biotechnology Malaysia (NIBM), c/o MARDI Headquarters, 43400 Serdang, Selangor Darul Ehsan, Malaysia

 

4Functional Food Research Group, Faculty of Applied Sciences, UCSI University, No. 1, Jalan Menara Gading, UCSI Height, 56000 Cheras, Kuala Lumpur, Federal Territory, Malaysia

 

Received: 2 February 2018/Accepted: 24 August 2018

 

ABSTRACT

In vitro culture of recalcitrant indica rice cultivar through intervening callus is difficult due to long regeneration period. Therefore, this study was undertaken to evaluate the growth promoting effects of lignosulfonate (LS) on callus proliferation and shoot induction of Malaysian recalcitrant indica rice cv. MR219. LS is a by-product of wood industry, commonly used as a plant growth enhancer. Seed derived calli were proliferated on Murashige and Skoog (MS) medium supplemented with different ion-chelated LS (calcium LS: CaLS and sodium LS: NaLS) at 50, 100, 150, and 200 mg/L. MS supplemented with 100 mg/L CaLS significantly increased the callus proliferation rate and adventitious root formation. In shoot induction study, both LSs did not enhance the shoot induction efficiency as compared to the control. However, the formation of albino shoot increased in MS fortified with 100 mg/L CaLS. Further chlorophyll and molecular analyses showed that, albino shoots induced from 100 mg/L CaLS had severe reduction in total chlorophyll content and expression of both chlorophyll-associated genes, chlorophyll a/b-binding protein 1 (OsCAB1R) and young seedling albino (OsYSA). Taken together, LS improves callus proliferation rate and modulate different physiological responses during plant growth of recalcitrant indica rice.

 

Keywords: Albino; callus proliferation; indica cv. MR219; lignosulfonate; regeneration

 

ABSTRAK

Pengkulturan kultivar beras indica rekalsitran secara in vitro melalui kalus intervensi adalah sukar kerana tempoh regenerasinya yang panjang. Oleh itu, kajian ini dijalankan untuk menilai kesan lignosulfonat (LS) terhadap proliferasi kalus dan induksi tunas beras indica rekalsitran Malaysia cv. MR219. LS adalah produk sampingan daripada industri kayu yang biasanya digunakan sebagai perangsang pertumbuhan tumbuhan dalam baja. Kalus diperoleh daripada biji diproliferasi atas medium Murashige dan Skoog (MS) yang ditambah dengan pengikat ion LS (kalsium LS: CaLS dan natrium LS: NaLS) pada kepekatan 50, 100, 150 dan 200 mg/L. MS yang ditambah dengan 100 mg/L CaLS didapati meningkatkan kadar perkembangan kalus dan pembentukan akar serabut. Dalam kajian induksi tunas, kedua-dua LSs tidak meningkatkan kecekapan induksi berbanding dengan kawalan. Walau bagaimanapun, penghasilan albino meningkat pada MS yang ditambah dengan 100 mg/L CaLS. Analisis klorofil dan molekul menunjukkan bahawa albino yang diinduksi daripada 100 mg/L CaLS mempunyai pengurangan yang banyak dalam jumlah kandungan klorofil dan pengekspresan kedua-dua gen yang berkaitan dengan klorofil, chlorophyll a/b-binding protein 1 (OsCAB1R) dan young seedling albino (OsYSA). Sebagai kesimpulan, LS meningkatkan kadar proliferasi kalus dan memodulasi tindak balas fisiologi yang berlainan semasa pertumbuhan beras indica rekalsitran.

 

Kata kunci: Albino; indica cv. MR219; lignosulfonat; proliferasi kalus; regenerasi

REFERENCES

Abiri, R., Maziah, M., Shaharuddin, N.A., Yusof, Z.N.B., Atabaki, N., Hanafi, M.M., Sahebi, M., Azizi, P., Kalhori, N. & Valdiani, A. 2017. Enhancing somatic embryogenesis of Malaysian rice cultivar MR219 using adjuvant materials in a high-efficiency protocol. International Journal of Environmental Science and Technology 14(5): 1091-1108.

Almas, A.R., Afanou, A.K. & Krogstad, T. 2014. Impact of lignosulfonate on solution chemistry and phospholipid fatty acid composition in soils. Pedosphere 24(3): 308-321.

Arnon, D.I. 1949. Copper enzymes in isolated chloroplasts, polyphenoxidase in Beta vulgaris. Plant Physiology 24(1): 1-15.

Andrew Kok, D.X., Low, L.Y., Zetty, N.B.Y., Rogayah, S., Wee, C.Y. & Lai, K.S. 2018. Iron biofortification of rice: Progress and prospects. Intech Open Croatia ISBN978-953-51-330-8 (In press).

Carrasco, J., Kovács, K., Czech, V., Fodor, F., Lucena, J.J., Vértes, A. & Hernández-Apaolaza, L. 2012. Influence of pH, iron source, and Fe/ligand ratio on iron speciation in lignosulfonate complexes studied using Mössbauer spectroscopy. Implications on their fertilizer properties. Journal of Agricultural and Food Chemistry 60(13): 3331-3340.

Cieschi, M.T., Benedicto, A., Hernández-Apaolaza, L. & Lucena, J.J. 2016. EDTA shuttle effect vs. lignosulfonate direct effect providing Zn to Navy Bean plants (Phaseolus vulgaris L. ‘Negro Polo’) in a calcareous soil. Frontiers in Plant Science 7: 1767.

DalCorso, G., Farinati, S. & Furini, A. 2010. Regulatory networks of cadmium stress in plants. Plant Signaling and Behavior 5(6): 663-667.

Docquier, S., Kevers, C., Lambe, P., Gaspar, T. & Dommes, J. 2007. Beneficial use of lignosulfonates in in vitro plant cultures: Stimulation of growth, of multiplication and of rooting. Plant Cell, Tissue and Organ Culture 90(3): 285-291.

Ertani, A., Francioso, O., Tugnoli, V., Righi, V. & Nardi, S. 2011. Effect of commercial lignosulfonate-humate on Zea mays L. metabolism. Journal of Agricultural and Food Chemistry 59(22): 11940-11948.

Food and Agriculture Organization (FAO). 2017. GIEWS - Global information and early warning system. The United Nation. http://www.fao.org/giews/countrybrief/country. jsp?code=MYS. Accessed by 10 November 2017.

Food and Fertilizer Technology Center (FFTC). 2002. MR219, A New High-Yielding Rice Variety with Yields of More than 10 MT/Ha. For the Asian and Pacific Region. http://www. fftc.agnet.org/library.php?func=view&id=20110725142748 &type_id=8. Accessed on 11 December 2017.

Gamborg, O.L., Miller, R. & Ojima, K. 1968. Nutrient requirements of suspension cultures of soybean root cells. Experimental Cell Research 50(1): 151-158.

Gaspar, T., Kevers, C., Penel, C., Greppin, H., Reid, D.M. & Thorpe, T.A. 1996. Plant hormones and plant growth regulators in plant tissue culture. In Vitro Cellular and Developmental Biology Plant 32(4): 272-289.

Hausman, J.F., Kevers, C. & Gaspar, T. 1995. Auxin-polyamine interaction in the control of the rooting inductive phase of poplar shoots in vitro. Plant Science 110(1): 63-71.

Htwe, N.N., Maziah, M., Ling, H.C., Zaman, F.Q. & Zain, A.M. 2011. Responses of some selected Malaysian rice genotypes to callus induction under in vitro salt stress. African Journal of Biotechnology 10(3): 350-362.

Jansson, S. 1999. A guide to the Lhc genes and their relatives in Arabidopsis. Trends in Plant Sciences 4(6): 236-240.

Jansson, S. 1994. The light-harvesting chlorophyll a/b-binding proteins. Biochimica et Biophysica Acta 1184(1): 1-19.

Kevers, C., Soteras, G., Baccou, J.C. & Gaspar, T. 1999. Lignosulfonates: Novel promoting additives for plant tissue cultures. In Vitro Cellular and Developmental Biology- Plant 35(5): 413-416.

Lai, K.S. & Takehisa, M. 2013. Isolation and characterization of Arabidopsis thaliana self-incompatibility mutant induced by heavy-ion beam irradiation. Acta Biologica Cracoviensia Series Botanica 55(2): 146-152.

Lai, K.S., Yusoff, K. & Mahmood, M. 2012. Heterologous expression of haemagglutinin-neuraminidase protein from Newcastle disease virus strain AF2240 in Centella asiatica. Acta Biologica Cracoviensia Series Botanica 54(1): 142-147.

Lai, K.S., Puad, A., Yusoff, K. & Mahmood, M. 2011. An efficient protocol for particle bombardment-mediated transformation of Centella asiatica. Acta Physiologiae Plantarum 33: 2547-2552.

Lim, Y.Y. & Lai, K.S. 2017. Generation of transgenic rice expressing cyclotide precursor Oldenlandia affinis kalata B1 protein. Journal of Animal and Plant Sciences 27(2): 667-671.

Livak, K.J. & Schmittgen, T.D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25(4): 402-408.

Martinez-Trujillo, M., Cabrera-Ponce, J.L. & Herrera-Estrella, L. 2003. Improvement of rice transformation using bombardment of scutellum-derived calli. Plant Molecular Biology Reporter 21(4): 429-437.

Mishra, R. & Rao, G.J.N. 2016. In vitro androgenesis in rice: Advantages, constraints and future prospects. Rice Science 23(2): 57-68.

Murashige, T. & Skoog, F. 1962. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum 15(3): 473-497.

Park, H.Y., Kim, S.A., Korlach, J., Rhoades, E., Kwok, L.W., Zipfel, W.R., Waxham, M.N., Webb, W.W. & Pollack, L. 2008. Conformational changes of calmodulin upon Ca2+ binding studied with a microfluidic mixer. Proceedings of the National Academy of Sciences of the United States of America 105(2): 542-547.

Raghavendra, G., Kumaraswamy, G.K., Ramya, B., Sandesh, H.S., Yogendra, K.N., Deepak, N. & Gowda, P.H.R. 2010. Direct multiple shoot regeneration of indica rice (Oryza sativa) Var. ‘Rasi’. Asian and Australasian Journal of Plant Science and Biotechnology 4(1): 71-73.

Rodríguez-Lucena, P., Tomasi, N., Pinton, R., Hernández- Apaolaza, L., Lucena, J.J. & Cesco, S. 2009. Evaluation of 59Fe-lignosulfonates complexes as Fe-sources for plants. Plant and Soil 325(1-2): 53.

Sah, S.K., Kaur, A., Kaur, G. & Cheema, G.S. 2014. Genetic transformation of rice: Problems, progress and prospects. Rice Research 3(1): 132-142.

Sahoo, K.K., Tripathi, A.K., Pareek, A., Sopory, S.K. & Singla- Pareek, S.L. 2011. An improved protocol for efficient transformation and regeneration of diverse indica rice cultivars. Plant Methods 7(1): 49.

Schaller, G.E., Bishopp, A. & Kieber, J.J. 2015. The yin-yang of hormones: Cytokinin and auxin interactions in plant development. The Plant Cell 27(1): 44-63.

Skoog, F. & Miller, C.O. 1957. Chemical regulation of growth and organ formation in plant tissues cultured in vitro. Symposia of the Society for Experimental Biology 11: 118-130.

Su, N., Hu, M.L., Wu, D.X., Wu, F.Q., Fei, G.L., Lan, Y., Chen, X.L., Shu, X.L., Zhang, X., Guo, X.P. & Cheng, Z.J. 2012. Disruption of a rice pentatricopeptide repeat protein causes a seedling-specific albino phenotype and its utilization to enhance seed purity in hybrid rice production. Plant Physiology 159(1): 227-238.

Telysheva, G., Lebedeva, G., Dizhbite, T., Zaimenko, N., Grivinya, D. & Virzina, O. 1997. Novel ligno-silicon products promoting root system development. In Biology of Root Formation and Development. Basic Life Sciences 65, edited by Altman, A. & Waisel, Y. Boston: Springer. pp. 92-93.

Telysheva, G., Lebedeva, G., Zaimenko, N. & Viesturs, U. 1992. New lignosilicon fertilizers and their action on soil biota. International Symposium, Soil Decontamination using Biological Processes. Karlsruhe: Deutschland. pp. 525-530.

Tuteja, N. & Mahajan, S. 2007. Calcium signaling network in plants: An overview. Plant Signaling & Behavior 2(2): 79-85.

van der Krieken, W., Kok, C. & Stevens, L. 2004. Compositions Comprising Lignosulfonates for Crop Protection and Crop Improvement. U.S. Patent Application 10/543: 702.

Visarada, K.B.R.S. & Sarma, N.P. 2004. Transformation of indica rice through particle-bombardment: Factors influencing transient expression and selection. Biologia Plantarum 48(1): 25-31.

Yamashita, T.T. & Thomas, T. 1996. Method and Composition for Promoting and Controlling Growth of Plants. U.S. Patent 5,549,729.

Yang, D., Qiu, X., Zhou, M. & Lou, H. 2007. Properties of sodium lignosulfonate as dispersant of coal water slurry. Energy Conversion and Management 48(9): 2433-2438.

Yang, T. & Poovaiah, B.W. 2008. Calcium/calmodulin-mediated signal network in plants. Trends in Plant Science 8(10): 505-512.

Yap, W.S. & Lai, K.S. 2017. Biochemical properties of twelve Malaysia rice cultivars in relation to yield potential. Asian Journal of Agricultural Research 11(4): 137-143.

Zuraida, A.R., Zulkifli, A.S., Habibuddin, H. & Naziah, B. 2012. Regeneration of Malaysian rice variety MR219 via somatic embryogenesis. Journal of Tropical Agriculture and Food Science 39(2): 167-177.

*Corresponding author; email: laikoksong@upm.edu.my

 

 

 

 

previous