Sains Malaysiana 48(4)(2019): 719–725

http://dx.doi.org/10.17576/jsm-2019-4804-03

 

Adsorption of Mercury(II) using Activated Carbon Produced from Bambusa vulgaris var. striata in a Fixed-Bed Column

(Penjerapan daripada Merkuri(II) menggunakan Karbon Teraktif yang Dihasilkan daripada Bambusa vulgaris var. striata dalam Kolum Lapisan Tetap)

 

EKA MARYA MISTAR1, IDA HASMITA1, TATA ALFATAH2, ABRAR MUSLIM3 & MUHAMMAD DANI SUPARDAN3*

 

1Department of Chemical Engineering, Serambi Mekkah, Banda Aceh, Indonesia

 

2Environment and Forestry Office of the Provincial Government of Aceh, Banda Aceh, Indonesia

 

3Department of Chemical Engineering, Universitas Syiah Kuala, Banda Aceh, Indonesia

 

Received: 22 July 2018/Accepted: 11 February 2019

 

ABSTRACT

Pollution by mercury dissolved in aqueous media causes a crucial problem for health and environment. In this study, activated carbon from Bambusa vulgaris var. striata was produced by chemical activation using NaOH for mercury adsorption. The effects of mercury initial concentrations namely 50 and 100 mg/L on the breakthrough characteristics of the adsorption process were defined. The mechanism of the adsorption process through the fixed-bed column was fitted to the Thomas model. The activated carbon was characterized by scanning electron microscopy and energy-dispersive X-ray spectroscopy. The adsorption study with a continuous system and using the Thomas model showed that the highest adsorption capacity (q0) of mercury ions is 218.08 mg/g. It can be concluded that activated carbon from Bambusa vulgaris var. striata has a great potential to act as an adsorbent to remove mercury from water.

 

Keywords: Activated carbon; adsorption; Bambusa vulgaris var. striata; mercury; Thomas model

 

ABSTRAK

Pencemaran merkuri terlarut dalam air menyebabkan masalah kesihatan kritikal dan mencemarkan alam sekitar. Dalam kajian ini, karbon teraktif daripada Bambusa vulgaris var. striata dihasilkan melalui pengaktifan kimia menggunakan NaOH untuk penjerapan merkuri. Kesan kepekatan merkuri awal iaitu 50 dan 100 mg/L ke atas kejayaan proses penjerapan telah ditakrifkan. Mekanisme proses penjerapan melalui kolum lapisan tetap telah disesuaikan dengan Model Thomas. Karbon teraktif yang dicirikan melalui mikroskopi imbasan elektron dan spektroskopi serakan tenaga sinar-X. Kajian penjerapan dengan sistem yang berterusan dan menggunakan Model Thomas menunjukkan kapasiti penjerapan tertinggi (q0) ion merkuri adalah 218.08 mg/g. Maka disimpulkan bahawa karbon teraktif daripada Bambusa vulgaris var. striata berpotensi besar untuk bertindak sebagai penjerat untuk mengasingkan merkuri daripada air.

 

Kata kunci: Bambusa vulgaris var. striata; karbon; merkuri; model Thomas; penjerapan

REFERENCES

Alalwan, H.A., Abbas, M.N., Abudi, Z.N. & Alminshid, A.H. 2018. Adsorption of thallium ion (Tl+3) from aqueous solutions by rice husk in a fixed-bed column: Experiment and prediction of breakthrough curves. Environmental Technology & Innovation 12: 1-13.

Alvarez, N.M.M., Pastrana, J.M., Lagos, Y. & Lozada, J.J. 2018. Evaluation of mercury (Hg2+) adsorption capacity using exhausted coffee waste. Sustainable Chemistry and Pharmacy 10: 60-70.

Andal, N.M. & Sakthi, V. 2010. A comparative study on the sorption characteristics of Pb(II) and Hg(II) onto activated carbon. E-Journal of Chemistry 7(3): 967-974.

Arias, F.E.A., Beneduci, A., Chidichimo, F., Furia, E. & Straface, S. 2017. Study of the adsorption of mercury (II) on lignocellulosic materials under static and dynamic conditions. Chemosphere 180: 11-23.

Asasian, N., Kaghazchi, T., Faramarzi, A., Hakimi-Siboni, A., Asadi-Keshes, R., Kavand, M. & Mohtashami, S.A. 2014. Enhanced mercury adsorption capacity by sulfurization of activated carbon with SO2 in a bubbling fluidized bed reactor. Journal of the Taiwan Institute of Chemical Engineers 45(4): 1588-1596.

Asasian, N., Kaghazchi, T. & Soleimani, M. 2012. Elimination of mercury by adsorption onto activated carbon prepared from the biomass material. Journal of Industrial and Engineering Chemistry 18(1): 283-289.

Bhatnagar, A., Hogland, W., Marques, M. & Sillanpaa, M. 2013. An overview of the modification methods of activated carbon for its water treatment applications. Chemical Engineering Journal 219: 499-511.

Bhatt, R. & Padmaj, P. 2019. A chitosan-thiomer polymer for highly efficacious adsorption of mercury. Carbohydrate Polymers 207: 663-674.

Cazetta, A.L., Vargas, A.M.M., Nogami, E.M., Kunita, M.H., Guilherme, M.R., Martins, A.C., Silva, T.L., Moraes, J.C.G. & Almeida, V.C. 2011. NaOH-activated carbon of high surface area produced from coconut shell: Kinetics and equilibrium studies from the methylene blue adsorption. Chemical Engineering Journal 174: 117-125.

Chu, K.H. 2010. Fixed bed sorption: Setting the record straight on the Bohart-Adams and Thomas models. Journal of Hazardous Materials 177(1-3): 1006-1012.

Gonzalez, P.G. & Pliego-Cuervo, Y.B. 2014. Adsorption of Cd (II), Hg (II) and Zn (II) from aqueous solution using mesoporous activated carbon produced from Bambusa vulgaris schrad. Chemical Engineering Research and Design 92(11): 2715-2724.

Gonzalez, P.G. & Pliego-Cuervo, Y.B. 2013. Physicochemical and microtextural characterization of activated carbons produced from water steam activation of three bamboo species. Journal of Analytical and Applied Pyrolysis 99: 32-39.

Hassan, A.F. & Hrdina, R. 2018. Chitosan/nanohydroxyapatite composite based scallop shells as an efficient adsorbent for mercuric ions: Static and dynamic adsorption studies. International Journal of Biological Macromolecules 109: 507-516.

Hassan, S.S.M., Kamel, A.K., Awwad, N.S., Aboterika, A.H.A. & Yahia, I.S. 2017. Adsorbent for efficient removal of mercury(II) from aqueous solution. European Chemical Bulletin 6(12): 558-563.

Ismaiel, A.A., Aroua, M.K. & Yusoff, R. 2013. Palm shell activated carbon impregnated with task-specific ionic-liquids as a novel adsorbent for the removal of mercury from contaminated water. Chemical Engineering Journal 225: 306-314.

Johari, K., Saman, N., Song, S.T., Heng, J.Y.Y. & Mat, H. 2014. Study of Hg(II) removal from aqueous solution using lignocellulosic coconut fiber biosorbents: Equilibrium and kinetic evaluation. Chemical Engineering Communications 201(9): 1198-1220.

Kabiri, S., Tran, D.N.H., Cole, M.A. & Losic, D. 2016. Functionalized 3-dimensional (3-d) graphene composite for high efficiency removal of mercury. Environmental Science: Water Research & Technology 2(2): 390-402.

Lu, X., Jiang, J., Sun, K., Wang, J. & Zhang, Y. 2014. Influence of the pore structure and surface chemical properties of activated carbon on the adsorption of mercury from aqueous solutions. Marine Pollution Bulletin 78(1-2): 69-76.

Mistar, E.M., Saisa, S., Muslim, A., Alfatah, T. & Supardan, M.D. 2018. Preparation and characterization of a high surface area of activated carbon from Bambusa vulgaris-Effect of NaOH activation and pyrolysis temperature. IOP Conference Series: Materials Science and Engineering 334: 012051.

Mondal, D.K., Nandi, B.K. & Purkait, M.K. 2013. Removal of mercury (II) from aqueous solution using bamboo leaf powder: Equilibrium, thermodynamic and kinetic studies. Journal of Environmental Chemical Engineering 1(4): 891-898.

Shafiq, M., Alazba, A.A. & Amin, M.T. 2018. Removal of heavy metals from wastewater using date palm as a biosorbent: A comparative review. Sains Malaysiana 47(1): 35-49.

Sun, N., Wen, X. & Yan, C. 2018. Adsorption of mercury ions from wastewater aqueous solution by amide functionalized cellulose from sugarcane bagasse. International Journal of Biological Macromolecules 108: 1199-1206.

Tan, Z., Qiu, J., Zeng, H., Liu, H. & Xiang, J. 2011. Removal of elemental mercury by bamboo charcoal impregnated with H2O2. Fuel 90(4): 1471-1475.

Trgo, M., Vukojevic, N.M. & Peric, J. 2011. Application of mathematical empirical models to dynamic removal of lead on natural zeolite clinoptilolite in a fixed bed column. Indian Journal of Chemical Technology 18: 123-131.

Vargas, A.M.M., Garcia, C.A., Reis, E.M., Lenzi, E., Costa, W.F. & Almeida, V.C. 2010. NaOH-activated carbon from flamboyant (Delonix regia) pods: Optimization of preparation conditions using central composite rotatable design. Chemical Engineering Journal 162: 43-50.

Zhu, J., Yang, J. & Deng, B. 2009. Enhanced mercury ion adsorption by amine-modified activated carbon. Journal of Hazardous Materials 166(2-3): 866-872.

 

*Corresponding author; email: m.dani.supardan@unsyiah.ac.id

 

 

 

previous