Sains Malaysiana 48(5)(2019): 1025–1033

http://dx.doi.org/10.17576/jsm-2019-4805-11

 

Immobilization of Choline Chloride: Urea onto Mesoporous Silica for Carbon Dioxide Capture

(Pemegunan Kolina Klorida: Urea ke atas Silika Mesoliang untuk Penangkapan Karbon Dioksida)

 

ZAITUN GHAZALI1,2, NUR HASYAREEDA HASSAN1,2, MOHD AMBAR YARMO1,3, TEH LEE PENG1,3 & RIZAFIZAH OTHAMAN1,2*

 

1School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

2Polymer Research Center, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

3Catalyst Research Group, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Received: 7 February 2019/Accepted: 28 March 2019

 

ABSTRACT

A green composite adsorbent based on mesoporous silica-gel (SG) and deep eutectic solvent (DES) mixture of choline chloride-urea (ChCl:U) was synthesized as an alternative for carbon dioxide (CO2) adsorption. The composite adsorbent was prepared by wet impregnation technique with various ChCl:U (mole ratio 1:2) content in SG at 5-15% (w/w). Fourier transform infrared attenuated total reflectance (ATR-FTIR) results showed successful impregnation of ChCl:U into SG with the presence of C=O carbonyl amide group stretching, N-H scissoring bending, CH2 bending and C-N stretching peaks. Thermal degradation of the adsorbent started with urea at 130°C followed by ChCl at 300°C. Meanwhile, nitrogen physisorption demonstrated a decrease in specific surface areas of the sorbents with increasing ChCl:U weight percentage due to the blockage of micropores by ChCl:U. The optimum CO2 adsorption capacity of 22.3 mg/g was achieved by 10% ChCl:U/SG200, which was higher than the immobilised SG200, hence making it relevant to become a green and economical adsorbent for CO2 capture.

 

Keywords: Adsorption; carbon capture; choline chloride; deep eutectic solvent; silica gel; urea

 

ABSTRAK

Penjerap komposit hijau berasaskan gel silika mesoliang (SG) dan pelarut eutektik dalam (DES) kolona klorida-urea (ChCl:U) disintesis untuk penjerapan karbon dioksida (CO2). Penjerap komposit telah disediakan dengan teknik penjejalan basah dengan muatan 5-15% (b/b) ChCl:U (nisbah mol 1:2). Spektrum inframerah transformasi Fourier-pantulan penuh kecil (ATR-FTIR) membuktikan bahawa ChCl:U telah berjaya dijejalkan ke atas SG dengan kehadiran puncak regangan kumpulan karbonil amida C=O , bengkokan N-H , bengkokan CH2 dan regangan C-N. Suhu degradasi penjerap bermula dengan urea pada 130°C diikuti oleh ChCl pada 300°C. Analisis penjerapan fizikal nitrogen menunjukkan penurunan luas permukaan dengan peningkatan peratus berat ChCl:U disebabkan mikroliang yang dilitupi oleh ChCl:U. Kapasiti penjerapan CO2 yang optimum (22.3 mg/g) tercapai dengan menggunakan 10% ChCl:U/SG200 dengan kapasiti penjerapannya lebih tinggi berbanding SG200 tanpa pemegunan,. Ini menjadikannya penjerap hijau yang ekonomi untuk penangkapan CO2.

 

Kata kunci: Gel silika; kolina klorida; pelarut eutektik dalam; penangkapan karbon; penjerapan; urea

REFERENCES

Abu Tahari, M.N., Hakim, A., Wan Isahak, W.N.R., Samad, W.Z. & Yarmo, M.A. 2015. Adsorption of CO2 on Octadecylamine- Impregnated on SiO2: Physical and chemical interaction studies. Advanced Materials Research 1087: 137-141.

Balsamo, M., Erto, A., Lancia, A., Totarella, G., Montagnaro, F. & Turco, R. 2018. Post-combustion CO2 capture: On the potentiality of amino acid ionic liquid as modifying agent of mesoporous solids. Fuel 218(April 2017): 155-161.

Creamer, A.E. & Gao, B. 2015. Carbon Dioxide Capture: An Affective Way to Combat Global Warming. New York: Springer Berlin Heidelberg.

Dai, Y., Van Spronsen, J., Witkamp, G., Verpoorte, R. & Choi, Y.H. 2013. Ionic liquids and deep eutectic solvents in natural products research: Mixtures of solids as extraction solvents. Journal of Natural Product 76: 2162-2173.

Erto, A., Silvestre-albero, A., Silvestre-albero, J., Rodríguez-reinoso, F., Balsamo, M., Lancia, A. & Montagnaro, F. 2015. Carbon-supported ionic liquids as innovative adsorbents for CO2 separation from synthetic flue-gas. Journal of Colloid and Interface Science 448: 41-50.

Gray, M.L., Champagne, K.J., Fauth, D., Baltrus, J.P. & Pennline, H. 2012. Performance of immobilized tertiary amine solid sorbents for the capture of carbon dioxide. International Journal of Greenhouse Gas Control 2(2008): 3-8.

Guo, X., Ding, L., Kanamori, K., Nakanishi, K. & Yang, H. 2017. Functionalization of hierarchically porous silica monoliths with polyethyleneimine (PEI) for CO2 adsorption. Microporous and Mesoporous Materials 245: 51-57.

Hayyan, M., Abo-Hamad, A., AlSaadi, M.A. & Hashim, M.A. 2015. Functionalization of graphene using deep eutectic solvents. Nanoscale Research Letters 10(1): 2-26.

Hu, J., Yang, X., Yu, J. & Dai, G. 2017. Carbon dioxide (CO2) absorption and interfacial mass transfer across vertically confined free liquid film-a numerical investigation. Chemical Engineering & Processing: Process Intensification 111: 46-56.

Jon, N., Abdullah, I. & Othaman, R. 2013. Effects of silica on the formation of epoxidised natural rubber/polyvinyl chloride membrane. Sains Malaysiana 42(4): 469-473.

Lee, C.H., Hyeon, D.H., Jung, H., Chung, W., Jo, D.H., Shin, D.K. & Kim, S.H. 2014. Effects of pore structure and PEI impregnation on carbon dioxide adsorption by ZSM-5 zeolites. Journal of Industrial and Engineering Chemistry 23: 251-256.

Leron, R.B. & Li, M.H. 2013. Solubility of carbon dioxide in a choline chloride-ethylene glycol based deep eutectic solvent. Thermochimica Acta 551: 14-19.

Leron, R.B., Caparanga, A. & Li, M.H. 2013. Carbon dioxide solubility in a deep eutectic solvent based on choline chloride and urea at T = 303.15-343.15K and moderate pressures. Journal of the Taiwan Institute of Chemical Engineers 44(6): 879-885.

Marcus, Y. 2018. Gas solubilities in deep eutectic solvents. Monatshefte Fur Chemie 149(2): 211-217.

Marliza, T.S., Yarmo, M.A., Hakim, A., Tahari, M.N.A., Hisham, M.W.M. & Taufiq-Yap, Y.H. 2017. CO2 capture on NiO supported imidazolium-based ionic liquid. American Institute of Physics 20008: 1-8.

Marwani, H.M. & Alsafrani, A.E. 2013. New solid phase extractor based on ionic liquid functionalized silica gel surface for selective separation and determination of lanthanum. Journal of Analytical Science and Technology 4(1): 13.

Ramdin, M., De Loos, T.W. & Vlugt, T.J.H. 2012. State-of-the-art of CO2 capture with ionic liquids. Industrial and Engineering Chemistry Research 51: 8149-8177.

Rao, S. & Riahi, K. 2006. The role of non-CO2 greenhouse gases in climate change mitigation: Long-term scenarios for the 21st century. Energy Journal 27: 177-200.

Sarmad, S., Mikkola, J.P. & Ji, X. 2017. Carbon dioxide capture with ionic liquids and deep eutectic solvents: A new generation of sorbents. ChemSusChem 10(2): 324-352.

Schaber, P.M., Colson, J., Higgins, S., Thielen, D., Anspach, B. & Brauer, J. 2004. Thermal decomposition (pyrolysis) of urea in an open reaction vessel. Thermochimica Acta 424(1-2): 131-142.

Shi, F., Zhang, Q., Li, D. & Deng, Y. 2005. Silica-gel-confined ionic liquids: A new attempt for the development of supported nanoliquid catalysis. Chemistry - A European Journal 11(18): 5279-5288.

Sing, S.W.K., Everett, D.H., Haul, R.A.W., Moscou, L., Pierotti, R.A., Rouquerol, J. & Siemieniewska, T. 1985. Reporting physisorption data for gas/solid systems. Pure Applied Chemistry 57: 603-619.

Vilarrasa-García, E., Cecilia, J.A., Santos, S.M.L., Cavalcante, C.L., Jiménez-Jiménez, J., Azevedo, D.C.S. & Rodríguez- Castellón, E. 2014. CO2 adsorption on APTES functionalized mesocellular foams obtained from mesoporous silicas. Microporous and Mesoporous Materials 187: 125-134.

Wang, K., Shang, H., Li, L., Yan, X., Yan, Z., Liu, C. & Zha, Q. 2012. Efficient CO2 capture on low-cost silica gel modified by polyethyleneimine. Journal of Natural Gas Chemistry 21(3): 319-323.

Yu, B., Cong, H., Zhao, X.S. & Chen, Z. 2011. Carbon dioxide capture by Dendrimer-modified silica nanoparticles. Adsorpt. Sci. Technol. 29(8): 781-788.

Yusuf, N.Y.M., Masdar, M.S., Isahak, W.N.R.W. & Nordin, D. 2018. Impregnated carbon- ionic liquid as innovative adsorbent for H2/CO2 separation from biohydrogen. International Journal of Hydrogen Energy 44(6): 3414-3424.

Zhang, J., Ma, Y., Shi, F., Liu, L. & Deng, Y. 2009. Room temperature ionic liquids as templates in the synthesis of mesoporous silica via a sol-gel method. Microporous and Mesoporous Materials 119(1-3): 97-103.

Zhang, Y., Ji, X. & Lu, X. 2015. Choline-based deep eutectic solvents for mitigating carbon dioxide emissions. Novel Materials for Carbon Dioxide Mitigation Technology, edited by Shi, F. & Morreale, B. New York: Elsevier B.V. pp. 87-116.

Zhu, J., He, B., Huang, J., Li, C. & Ren, T. 2018. Effect of immobilization methods and the pore structure on CO2 separation performance in silica-supported ionic liquids. Microporous and Mesoporous Materials 260(October 2017): 190-200.

Zhu, J., Xin, F., Huang, J., Dong, X. & Liu, H. 2014. Adsorption and diffusivity of CO2 in phosphonium ionic liquid modified silica. Chemical Engineering Journal 246: 79-87.

 

*Corresponding author; email: rizafizah@ukm.edu.my

 

 

 

previous