Sains Malaysiana 48(5)(2019): 1035–1042

http://dx.doi.org/10.17576/jsm-2019-4805-12

 

The Influence of Surfactant/Co-Surfactant Hydrophilic-Lipophilic Balance on the Formation of Limonene-Based Microemulsion as Vitamin C Carrier

(Pengaruh Keseimbangan Hidrofilik-Lipofilik Surfaktan/Ko-Surfaktan terhadap Pembentukan Mikroemulsi Berasaskan Limonena sebagai Pembawa Vitamin C)

 

RAMLI, S.1,2*, CHYI, K.T.1, ZAINUDDIN, N.1, MOKHTAR, W.N.A.W.1 & ABDUL RAHMAN, I.3

 

1Centre for Advanced Materials and Renewable Resources, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

2Polymer Research Center, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

3Nuclear Technology Research Center, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Received: 5 December 2018/Accepted: 19 March 2019

 

ABSTRACT

This research was conducted to produce a limonene-based microemulsion system as vitamin C carrier. The microemulsion was produced using limonene as the oil phase, tween20 and tween80 as surfactants while propylene glycol, polyethylene glycol 400 and glycerol as co-surfactants. Pseudo-ternary phase diagrams were constructed to determine the microemulsion area by using the water titration method at 25°C. The effect of hydrophilic-lipophilic balance (HLB) value of the mixture of S/CoS on the formation of limonene-based microemulsion was studied. The HLB value calculated for the mixture of tween20/propylene glycol in the different ratio was between 10.1 and 13.4. From the experiment, the preparation of limonene-based microemulsion system with tween20/propylene glycol was able to provide large and high stability of microemulsion region on ternary phase diagram (23.6%) while higher HLB value resulted in larger microemulsion area in ternary phase diagrams. The sole formulation with propylene glycol was further selected to carry out the physicochemical characterization of system’s stability, particle size and electrical conductivity. All microemulsion systems showed good stability for four weeks at temperature of 4, 25 and 40°C without any phase change and separation. Particle size characterization results elucidated that all microemulsion systems consisted particle size between 20 and 100 nm. The study of electrical conductivity showed that water-in-oil microemulsion was formed from 5-45% wt. of water whereas bicontinuous microemulsion was formed from 50-90% wt. of water content. Overall, the result showed that microemulsion tween20/propylene glycol/limonene/water was potential as a carrier system of vitamin C.

 

Keywords: HLB; limonene; microemulsion; propylene glycol; tween20

 

ABSTRAK

Kajian ini dijalankan untuk menghasilkan satu sistem mikroemulsi berasaskan limonena sebagai pembawa vitamin C. Mikroemulsi dihasilkan dengan menggunakan limonena sebagai fasa minyak, campuran tween20 dan tween80 sebagai surfaktan, manakala propilena glikol, polietilena glikol 400 dan gliserol bertindak sebagai ko-surfaktan. Rajah fasa pseudo-ternari dibina bagi menentukan keluasan rantau pembentukan mikroemulsi yang menggunakan kaedah penitratan air pada suhu 25°C. Kesan nilai keseimbangan hidrofilik-lipofilik (HLB) bagi campuran S/KoS terhadap pembentukan mikroemulsi berasaskan limonena turut dikaji. Nilai HLB bagi campuran tween20/propilene glikol dalam pelbagai nisbah adalah antara 10.1 dan 13.4. Penyediaan sistem mikroemulsi berasaskan limonena dengan tween20/propilena glikol berupaya memberikan rantau mikroemulsi yang luas pada gambar rajah fasa ternari (23.6%). Berdasarkan kajian ini, nilai HLB yang tinggi telah memberikan rantau mikroemulsi yang lebih luas pada gambar rajah fasa ternari. Formulasi yang terdiri daripada propilena glikol dipilih untuk pencirian fizikokimia yang melibatkan kestabilan sistem, saiz partikel dan kekonduksian elektrik. Perbandingan sifat fizikokimia dilakukan bagi sistem mikroemulsi yang mengandungi vitamin C serta sistem asas tanpa penambahan vitamin C. Kesemua sistem mikroemulsi yang dikaji menunjukkan kestabilan yang tinggi selama empat minggu pada suhu 4, 25 dan 40°C tanpa sebarang perubahan dan pemisahan fasa. Pencirian saiz partikel menunjukkan sistem mikroemulsi mempunyai saiz partikel antara 20 dan 100 nm. Ujian kekonduksian elektrik pula menunjukkan mikroemulsi jenis air-dalam-minyak (a/m) terbentuk bagi peratusan air 5-45% bt. manakala peratusan air antara 50-90% bt. membentuk mikroemulsi dwiselanjar. Secara keseluruhan, sistem mikroemulsi tween20/propilena glikol/limonena/air berpotensi sebagai sistem pembawa vitamin C.

 

Kata kunci: HLB; limonena; mikroemulsi; propilena glikol; tween20

REFERENCES

Alexander, A., Dwivedi, S., Ajazuddin, Giri, T.K., Saraf, S., Saraf, S. & Tripathi, D.K. 2012. Approaches for breaking the barriers of drug permeation through transdermal drug delivery. Journal of Controlled Release 164(1): 26-40.

Bachysky, M.O., Shah, N.H., Patel, C.I. & Malick, A.W. 1997. Factors affecting the efficiency of a self-emulsifying oral delivery system. Drug Development and Industrial Pharmacy 23(8): 809-816.

Basit, A., Newton, J. & Lacey, L. 1998. The effect of polyethylene glycol 400(Peg 400) on gastrointestinal transit. Journal of Pharmacy and Pharmacology 50(S9): 97-97.

Chen, H., Chang, X., Weng, T., Zhao, X., Gao, Z., Yang, Y., Xu, H. & Yang, X. 2004. A study of microemulsion systems for transdermal delivery of triptolide. Journal of Controlled Release 98(3): 427-436.

Cho, Y.H., Kim, S., Bae, E.K., Mok, C. & Park, J. 2008. Formulation of a cosurfactant-free o/w microemulsion using nonionic surfactant mixtures. Journal of Food Science 73(3): 115-121.

Chin, H.J. 2013. Mikroemulsi berasaskan minyak sawit bagi aplikasi losyen muka. Ijazah Sarjana Muda, Sains dan Teknologi, Universiti Kebangsaan Malaysia (Unpublished).

Cui, J., Yu, B., Zhao, Y., Zhu, W., Li, H., Lou, H. & Zhai, G. 2009. Enhancement of oral absorption of curcumin by self-microemulsifying drug delivery systems. International Journal of Pharmaceutics 371(1): 148-155.

Fanun, M. 2010. Properties of microemulsions with mixed nonionic surfactants and citrus oil. Colloids and Surfaces A: Physicochemical and Engineering Aspects 369(1): 246-252.

Gadhave, A.D. & Waghmare, J.T. 2014. A short review on microemulsion and its application in extraction of vegetable oil. International Journal of Research in Engineering and Technology 3(9): 147-158.

Gao, Z.G., Choi, H.G., Shin, H.J., Park, K.M., Lim, S.J., Hwang, K.J. & Kim, C.K. 1998. Physicochemical characterization and evaluation of a microemulsion system for oral delivery of cyclosporin A. International Journal of Pharmaceutics 161(1): 75-86.

Hathout, R.M., Woodman, T.J., Mansour, S., Mortada, N.D., Geneidi, A.S. & Guy, R.H. 2010. Microemulsion formulations for the transdermal delivery of testosterone. European Journal of Pharmaceutical Sciences 40(3): 188-196.

Herrera, J.R., Peralta, R.D., Lopez, R.G., Cesteros, L.C., Mendizabal, E. & Puig, J.E. 2003. Cosurfactant effects on the polymerization of vinyl acetate in anionic microemulsion media. Polymer 44(6): 1795-1802.

Ismail, A.R., Wan Nurul Fatihah, W.Y., Daik, R. & Hazimah, A.H. 2014. Effect of glycerol derived co-surfactant on the ternary phase behavior of palm-based microemulsions. Journal of Oil Palm Research 26(3): 240-250.

Jadhav, J.K. & Sreenivas, S.A. 2012. Review on chemicals permeation enhancer used in transdermal drug delivery system. International Journal of Science Innovations and Discoveries 2(6): 204-217.

Khalid, N.R., Che Wel, C.A., Alam, S.S. & Mokhtaruddin, S.A. 2018. Cosmetic for modern consumer: The impact of self-congruity on purchase intention. International Journal of Asian Social Science 8(1): 34-41.

Kale, S.N. & Deore, S.L. 2017. Emulsion, micro emulsion and nano emulsion: A review. Systematic Reviews in Pharmacy 8(1): 39-47.

Kogan, A., Aserin, A. & Garti, N. 2007. Improved solubilization of carbamazepine and structural transitions in nonionic microemulsions upon aqueous phase dilution. Journal of Colloid and Interface Science 315(2): 637-647.

Lawrence, M.J. & Rees, G.D. 2000. Microemulsion-based media as novel drug delivery systems. Advanced Drug Delivery Reviews 45(1): 89-121.

Liu, C.H., Chang, F.Y. & Hung, D.K. 2011. Terpene microemulsions for transdermal curcumin delivery: Effects of terpenes and cosurfactants. Colloids and Surfaces B: Biointrefaces 82: 63-70.

Lopes, L.B. 2014. Overcoming the cutaneous barrier with microemulsions. Pharmaceutics 6(1): 52-77.

Matsaridou, I., Barmpalexis, P., Salis, A. & Nikolakakis, I. 2012. The influence of surfactant HLB and oil/surfactant ratio on the formation and properties of self-emulsifying pellets and microemulsion reconstitution. AAPS PharmaSciTech 13(4): 1319-1330.

Mohd Nadzir, M., Fen, T.W., Mohamed, A.R. & Hisham, S.F. 2017. Size and stability of curcumin niosome from combinations of tween 80 and span 80. Sains Malaysiana 46(12): 2455-2460.

Matsaridou, I., Barmpalexis, P., Salis, A. & Nikolakakis, I. 2012. The influence of surfactant HLB and oil/surfactant on the formation and properties of self-emulsifying pellets and microemulsion reconstitution. AAPS PharmaSciTech 13(4): 1319-1330.

Ozturk, B., Argin, S., Ozilgen, M. & Mcclements, D.J. 2015. Formation and stabilization of nanoemulsion-based vitamin E delivery systems using natural biopolymers: Whey protein isolate and gum arabic. Food Chemistry 188(1): 256-263.

Pouton, C.W. 1985. Self-emulsifying drug delivery systems: Assessment of the efficiency of emulsification. International Journal of Pharmaceutics 27(2-3): 335-348.

Prausnitz, M.R. & Langer, R. 2008. Transdermal drug delivery. Nature Biotechnology 26(11): 1261-1268.

Ramli, S., Norhman, N., Zainuddin, N., Mohd Ja’afar, S. & Abdul Rahman, I. 2017. Nanoemulsion based palm olein as Vitamin E carrier. Malaysian Journal of Analytical Sciences 21(6): 1399-1408.

Ramli, S., Mohd Ja’afar, S., Abdul Sisak, M.A., Zainuddin, N. & Abdul Rahman, I. 2015. Formulation and physical characterization of microemulsion based carboxymethyl cellulose as vitamin C carrier. Malaysian Journal of Analytical Sciences 19(1): 275-283.

Ramli, S., Ross, B.P. & Gentle, I.R. 2009. Formulation and physical characterization of microemulsions containing isotretinoin. International Conference on Biomedical and Pharmaceutical Engineering. pp. 1-7.

Rehman, K. & Zulfakar, M.H. 2014. Recent advances in gel technologies for topical and transdermal drug delivery. Drug Development and Industrial Pharmacy 40(4): 433-440.

Rehman, K., Mohd Amin, M.C. & Zulfakar, M.H. 2014. Development and physical characterization of polymer-fish oil bigel (hydrogel/oleogel) system as a transdermal drug delivery vehicle. Journal of Oleo Science 63(10): 961-970.

Rozman, B., Zvonar, A., Falson, F. & Gasperlin, M. 2009. Temperature-sensitive microemulsion gel: An effective topical delivery system for simultaneous delivery of Vitamins C and E. AAPS PharmSciTech 10(1): 54-61.

Sail, M.A., Wan Mustafa, W.A., Mohamad, Y.S., Maskat, M.Y. & Shamsuddin, A.F. 2018. Optimisation of cinnamaldehyde-in-water nanoemulsion formulation using central composite rotatable design. Sains Malaysiana 47(9): 1999-2008.

Shah, V.P., Behl, C.R., Flynn, G.L., Higuchi, W.I. & Schaefer, H. 1992. Principles and criteria in the development and optimization of topical therapeutic products. International Journal of Pharmaceutics 82: 21-28.

Shaninuzzaman, M., Yaakob, Z. & Moniruzzaman, M. 2016. Medicinal and cosmetics soap production from Jatropha oil. Journal of Cosmetic Dermatology 15(2): 185-193.

Zainuddin, N., Ahmad, I., Abdul Rahman, I. & Ramli, S. 2017. Kesan penambahan limonene terhadap mikroemulsi asid oleic/cremophor Rh 40/transcutol/air. Sains Malaysiana 46(10): 1797-1805.

 

*Corresponding author; email: su_ramli@ukm.edu.my

 

 

 

previous