Sains Malaysiana 48(7)(2019): 1417–1424

http://dx.doi.org/10.17576/jsm-2019-4807-10

 

Comparison of Phenolic Constituent in Hibiscus sabdariffa cv. UKMR-2 Calyx at Different Harvesting Times

(Perbandingan Sebatian Fenolik dalam Kaliks Hibiscus sabdariffa kv. UKMR-2 pada Masa Penuaian Berbeza)

 

SITI AISHAH MOHD ALI1,2*, CHE RADZIAH CHE MOHD3 & JALIFAH LATIP1

 

1Centre for Advanced Materials and Renewable Resources, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

2Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia

 

3School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Received: 10 January 2019/Accepted: 1 May 2019

 

ABSTRACT

The metabolic changes in the phenolics content of Hibiscus sabdariffa cv. UKMR-2 were investigated at different harvesting times based on the High-Performance Liquid Chromatographic method using a photodiode array detector (HPLC-PDA) with gradient elution. The antioxidant activity was also determined using 2,2-diphenyl-1-picrylhydrazyl free radical scavenging activity (DPPH) assay. The cultivation was executed under a control condition, and the calyces were separately harvested at four maturation stages. UKMR-2 calyces were extracted with water via sonication (50°C, 30 min). HPLC-PDA analysis showed two predominant anthocyanins, namely delphinidin-3-O-sambubioside (2.07-2.47 mg/g DW) and cyanidin-3-O-sambubioside (0.55-1.01 mg/g DW). In addition, ascorbic acid (3.34-9.88 mg/g DW), caffeic acid (0.08-0.09 mg/g DW) and chlorogenic acid (0.50-0.65 mg/g DW) were also detected in all maturity stages. Cyanidin-3-O-sambubioside content increased as the calyx became more mature, whereas the delphinidin-3-O-sambubioside, ascorbic acid, and chlorogenic acid content declined towards calyx maturity. The antioxidant activity gradually increased as the calyx ripening progressed. However, the activities did not differ significantly between the stages (p>0.05). The high content of total phenolic, total anthocyanins, and free radical scavenging activity were detected at Stage 4 (28-30 DAA) in UKMR-2, suggesting that this stage is the most appropriate maturity stage for harvesting H. sabdariffa cv. UKMR-2 calyces compared to the other maturity stages.

 

Keywords: Antioxidant; H. sabdariffa cv. UKMR-2; maturity stages; phenolic content

 

ABSTRAK

Perubahan metabolik bagi sebatian fenolik pada masa penuaian yang berbeza telah dikaji dalam Hibiscus sabdariffa kv. UKMR-2 berdasarkan kaedah Kromatografi Cecair Berprestasi Tinggi menggunakan pengesan foto-diod (HPLC-PDA) dengan elusi kecerunan kepolaran. Aktiviti antioksidan juga ditentukan menggunakan asai penyah-radikal bebas 2,2-difenil-1-pikrilhidrazil (DPPH). Penanaman dilakukan di bawah keadaan terkawal dan penuaian kaliks dilakukan secara berasingan pada empat tahap kematangan. Kaliks rosel diekstrak dengan air secara sonikasi (50°C, 30 min). Analisis HPLC-PDA menunjukkan kehadiran dua sebatian antosianin iaitu delfinidin-3-O-sambubiosida (2.07-2.47 mg/g BK) dan sianidin-3-O-sambubiosida (0.55-1.01 mg/g BK). Selain itu, asid askorbik (3.34-9.88 mg/g BK), asid kafeik (0.08-0.09 mg/g BK) dan asid klorogenik (0.50-0.65 mg/g BK) juga dikesan dalam semua tahap kematangan. Kandungan sianidin-3-O-sambubiosida meningkat apabila kaliks menjadi lebih matang, sebaliknya kandungan delfinidin-3-O-sambubiosida, asid askorbik dan asid klorogenik menurun apabila kaliks mencapai kematangan. Aktiviti antioksidan menunjukkan peningkatan berterusan mengikut tahap kematangan. Walau bagaimanapun, ia tidak menunjukkan kesan signifikan antara tahap kematangan (p>0.05). Kandungan jumlah fenolik, jumlah antosianin dan aktiviti antioksidan yang tinggi dikesan pada Tahap 4 (28-30 DAA) bagi UKMR-2, mencadangkan tahap ini sebagai tahap kematangan untuk penuaian H. sabdariffa kv. UKMR-2 berbanding dengan peringkat kematangan yang lain.

 

Kata kunci: Antioksidan; H. sabdariffa kv. UKMR-2; kandungan fenolik; tahap kematangan

REFERENCES

Alighourchi, H. & Barzegar, M. 2009. Some physicochemical characteristics and degradation kinetic of anthocyanin of reconstituted pomegranate juice during storage. Journal of Food Engineering 90(2): 179-185.

Amor, B.B. & Allaf, K. 2009. Impact of texturing using instant pressure drop treatment prior to solvent extraction of anthocyanins from Malaysian roselle (Hibiscus sabdariffa). Food Chemistry 115(3): 820-825.

Bernal, F.A., Orduz-Diaz, L.L. & Coy-Barrera, E. 2016. Application of FARAFAC and OPLS-DA analysis on HPLC fingerprints for the characterization of Hibiscus sabdariffa calyces. Quimica Nova 39(2): 160-166.

Brahma, J., Singh, B. & Rethy, P. 2014. Bioactive and nutraceutical compound manipulation in Hibiscus sabdariffa L. leaves: A common undershrub consumed by the Bodo tribes of BTC, Assam, India. International Research Journal of Pharmacy 5(6): 463-467.

Bureau, S., Renard, C.M.G.C., Reich, M., Ginies, C. & Audergon, J.M. 2009. Change in anthocyanin concentrations in red apricot fruits during ripening. LWT-Food Science Technology 42(1): 372-377.

Buta, J.G. & Spaulding, D.W. 1997. Endogenous levels of phenolics in tomato fruit during growth and maturation. Journal of Plant Growth Regulation 16: 43-46.

Castro, N.E.A., de Pinto, J.E.B.P., Cardoso, M.G., Morais, A.R., Bertolucci, S.K.V., Silva, F.G. & Delu Filho, N. 2004. Planting time for maximization of yield of vinegar plant calyx (Hibiscus sabdariffa L.). Ciencia e Agrotecnologia 28(3): 542-551.

Chumsri, P., Airichote, A. & Itharat, A. 2008. Studies on the optimum conditions for the extraction and concentration of roselle (Hibiscus sabdariffa Linn.) extract. Songklanakarin Journal of Science and Technology 30(1): 133-139.

Copeland, L.O. & McDonald, M.B. 1995. Seed Vigor and Vigor Test, in Principles of Seed Science and Technology. London: Chapman and Hall. p. 157.

Da-Costa-Rocha, I., Bonnlaender, B., Sievers, H., Pischel, I. & Heinrich, M. 2014. Hibiscus sabdariffa L. - A phytochemical and pharmacological review. Food Chemistry 165: 424-443.

Deshmukh, S.R., Wadegaonkar, V.P., Bhagat, R.P. & Wadegaonkar, P.A. 2011. Tissue specific expression of anthraquinones, flavonoids and phenolics in leaf, fruit and root suspension cultures of Indian mulberry (Morinda citrifola L.). Plant Omics Journal 4(1): 6-13.

Eltayeib, A.A. & Hamade, H. 2014. Phytochemical and chemical composition of water extract of Hibiscus sabdariffa (Red Karkade Calyces) in North Kordofan State-Sudan. International Journal of Advanced Research in Chemical Science 1(6): 10-13.

Fakir, M.S.A., Islam, M.M., Islam, A., Islam, F. & Chowdhury, M.M. 2012. Capsule growth and calyx protein content in Hibiscus sabdariffa L. var. sabdariffa. Journal of Agroforestry and Environment 6(2): 1-4.

Fasoyiro, S.B., Babalola, S.O. & Owosibo, T. 2005. Chemical composition and sensory quality of fruit-flavoured roselle (Hibiscus sabdariffa) drinks. World Journal of Agricultural Sciences 1(2): 161-164.

Giusti, M.M. & Wrolstad, R.E. 2001. Characterization and measurement of anthocyanins by UV-Visible Spectroscopy. Current Protocols in Food Analytical Chemistry 1(1): F1.2.1-F1.2.6.

Goncalves, B., Silva, A.P., Moutinho-Pereira, J., Bacelar, E., Rosa, E. & Meyer, A.S. 2007. Effect of ripeness and postharvest storage on the evolution of colour and anthocyanins in cherries (Prunus avium L.). Food Chemistry 103(3): 976-984.

Haryati, T., Nisa, C., Julianti, E. & Basyuni, M. 2018. Changes in size and weight of calyxes, weight and moisture content of seeds of roselle (Hibiscus sabdariffa L.) during development. Journal of Physics: Conference Series 1116: 052027.

Hassanein, R.A., Khattab, H.K.I., EL-Bassiouny, H.M.S. & Sadak, M.S. 2005. Increasing the active constituents of sepals of roselle (Hibiscus sabdariffa L.) plant by applying gibberellic acid and benzyladenine. Journal of Applied Sciences Research 1(2): 137-146.

Hussein, R.M., Shahein, Y.E., El Hakim, A.E. & Awad, H.M. 2010. Biochemical and molecular characterization of three colored types of roselle (Hibiscus sabdariffa L.). Journal of American Science 6(11): 726-733.

Ichiyanagi, T., Shida, Y., Rahman, M.M., Hatano, Y. & Konishi, T. 2006. Bioavailability and tissue distribution of anthocyanins in bilberry (Vaccinium myrtillus L.) extract in rats. Journal of Agriculture Food Chemistry 54(18): 6578-6587.

Idris, M.H.M., Siti Balkis, B., Mohamad, O. & Jamaludin, M. 2012. Protective role of Hibiscus sabdariffa calyx extract against streptozotocin induced sperm damage in diabetic rats. EXCLI Journal 11: 659-669.

Ijeomah, A.U., Ugwuona, F.U. & Abdullahi, H. 2012. Phytochemical composition and antioxidant properties of Hibiscus sabdariffa and Moringa oleifera. Nigerian Journal of Agriculture, Food and Environment 8(1): 10-16.

Izatus Shima, T., Siti Balkis, B., Maizatul Nadhirah, I., Satirah, Z. & Jamaludin, M. 2017. Kesan ekstrak akueus rosel (Hibiscus sabdariffa Linn.) terhadap sperma dan testis tikus diadministrasi nikotin. Sains Malaysiana 46(9): 1611-1616.

Jafarian, S., Mortazavi, A., Kenari, R.S. & Elhami Rad, A.H. 2014. Total phenolic content & antioxidant activity of roselle (Hibiscus sabdariffa L.) calyces extracts. Journal of Applied Science and Agriculture 9(9): 165-169.

Khafaga, E.R. & Koch, H. 1980. Stage of maturity and quality of roselle (Hibiscus sabdariffa L. var. sabdariffa) - Organic acids. Angewandte Botanik 54(5-6): 287-293.

Kouakou, T.H., Konkon, N.G., Ayolie, K., Obouayeba, A.P., Abeda, Z.H. & Kone, M. 2015. Anthocyanin production in calyx and callus of roselle (Hibiscus sabdariffa L.) and its impact on antioxidant activity. Journal of Pharmacognosy and Phytochemistry 4(3): 9-15.

Lislivia, Y., Siti Aishah, M.A., Jalifah, L., Norsyahida, M.F., Siti Balkis, B. & Satirah, Z. 2017. Roselle is cardioprotective in diet-induced obesity rat model with myocardial infarction. Life Sciences 191: 157-165.

Macheix, J.J., Fleuriet, A. & Billot, J. 1990. Fruit Phenolic. Boca Raton: CRC.

Manach, C., Scalbert, A., Morand, C., Remesy, C. & Jimenez, L. 2004. Polyphenols: Food sources and bioavailability. The American Journal of Clinical Nutrition 79(5): 727-747.

McClaleb, R.S. 1998. Hibiscus production manual. Ciencia e Agrotecnologia 28(3): 542-551.

Mohamed, R., Fernandez, J., Pineda, M. & Aguilar, M. 2007. Roselle (Hibiscus sabdariffa) seed oil is a rich source of gamma-tocopherol. Journal of Food Science 72(3): 207-211.

Miletić, N., Popović, B., Mitrović, O. & Kandić, M. 2012. Phenolic content and antioxidant capacity of fruits of plum cv. ‘Stanley’ (Prunus domestica L.) as influenced by maturity stage and on-tree ripening. Australian Journal of Crop Science 6(4): 681-687.

Mungole, A. & Chaturvedi, A. 2011. Hibiscus sabdariffa L: A rich source of secondary metabolites. International Journal of Pharmaceutical Sciences Review and Research 6(1): 83-87.

Nur Amirah, Y., Alias, A.A. & Wan Zaliha, W.S. 2015. Growth and water relations of roselle grown on BRIS soil under partial root zone drying. Malaysia Applied Biology 44(1): 63-67.

Obouayeba, A.P., Djyh, N.B., Diabate, S., Djaman, A.J., N’guessan, J.D., Kone, M. & Kouakou, T.H. 2014. Phytochemical and antioxidant activity of roselle (Hibiscus sabdariffa L.) petal extracts. Research Journal of Pharmaceutical, Biological and Chemical Sciences 5(2): 1453-1465.

Osman, M., Golam, F., Saberi, S., Majid, N.A., Nagoor, N.H. & Zulqarnain, M. 2011. Morpho-agronomic analysis of three roselle (Hibiscus sabdariffa L.) mutants in tropical Malaysia. Australian Journal of Crop Science 5(10): 1150-1156.

Puro, K., Sunjukta, R., Samir, S., Ghatak, S., Shakuntala, I. & Sen, A. 2014. Medicinal uses of roselle plant (Hibiscus sabdariffa L.): A mini review. Indian Journal of Hill Farming 27(1): 81-90.

Raffo, A., Cherubino, L., Vincenzo, F., Ambrozino, P., Salucci, M., Gennaro, L., Bugianesi, R., Giuffrida, F. & Quaglia, G. 2002. Nutritional value of cherry tomatoes (Lycopersicon esculentum cv. Naomi F1) harvested at different ripening stages. Journal of Agricultural and Food Chemistry 50(22): 6550-6556.

Ryu, J., Soon-Jae, K.S.J., Jo, Y.D., Jin, C.H., Nam, B.M., Lee, S.Y., Jeong, S.W., Im, S.B., Oh, S.C., Cho, L., Ha, B.K. & Kang, S.Y. 2016. Comparison of phytochemicals and antioxidant activity in blackberry (Rubus fruticosus L.) fruits of mutant lines at the different harvest time. Plant Breeding and Biotechnology 4(2): 242-251.

Satirah, Z., Siti Nor Farhanah, S.N.S. & Siti Balkis, B. 2016. Hibiscus sabdariffa Linn. (roselle) protects against nicotine-induced heart damage in rats. Sains Malaysiana 45(2): 207-214.

Sharara, M.S. 2017. Copigmentation effect of some phenolic acids on stabilization of roselle (Hibiscus sabdariffa) anthocyanin extract. American Journal of Food Science and Technology 5(2): 45-52.

Siti Aishah, M.A., Che Radziah, C.M.Z. & Jalifah, L. 2019. Influence of elevated CO2 on the growth and phenolic constituents production in Hibiscus sabdariffa var. UKMR-2. Jurnal Teknologi 81(3): 109-118.

Siti Aishah, M.A., Jalifah, L. & Che Radziah, C.M.Z. 2017. Phenolic content of roselle’s calyces (Hibiscus sabdariffa var. UKMR-2) at different maturation stages. UKM-UR-UII-PSU Joint Seminar 2017 Abstract Book. p. 34.

Sukwattanasinit, T., Burana-osot, J. & Sotanaphun, U. 2007. Spectrophotometric method for quantitative determination of total anthocyanins and quality characteristics of roselle (Hibiscus sabdariffa). Planta Medica 73(14): 1517-1522.

Waterhouse, A.L. 2002. Determination of total phenolics. Current Protocols in Food Analytical Chemistry 6(1): I1.1.1-I1.1.8.

 

*Corresponding author; email: jalifah@ukm.edu.my

 

 

 

previous