Sains Malaysiana 48(8)(2019): 1565–1574

http://dx.doi.org/10.17576/jsm-2019-4808-01

 

Headwater Streams Contain Amounts of Heavy Metal in an Alpine Forest in the Upper Reaches of the Yangtze River

(Aliran Kepala Air Mengandungi Amaun Logam Berat di Hutan Alpin di Bahagian Hulu Sungai Yangtze)

 

ZIYI LIANG, FUZHONG WU*, WANQIN YANG, YU ZHANG, JUNWEI WU & FAN YANG

 

Long-term Research Station of Alpine Forest Ecosystems, Key Laboratory of Ecological Forestry Engineering, Institute of Ecology & Forestry, Sichuan Agricultural University, Chengdu

China

 

Received: 1 June 2017/Accepted: 21 January 2018

 

ABSTRACT

Headwater streams are an essential link in the source and sink dynamics of heavy metals between terrestrial and aquatic ecosystems and are also critically important for downstream ecosystem processes and water quality. However, there is little available information about headwater streams. Therefore, the stream storage and distribution patterns of Cd, Pb, Ni, Cr, Cu, Mn and Zn were investigated in ten headwater streams of an Alpine forest located in the upper Yangtze River during the rainy season. The results indicated that the heavy metal storage per unit area of the investigated streams was as follows: 0.95 mg·m-2 for Cd, 8.36 mg m-2 for Pb, 1.98 mg m-2 for Ni, 136.98 mg m-2 for Cr, 9.29 mg m-2 for Cu, 433.39 mg m-2 for Mn and 29.07 mg m-2 for Zn; while the heavy metal storage per unit area of the catchment was as follows: 1.19 mg hm-2 for Cd, 10.47 mg hm-2 for Pb, 2.48 mg hm-2 for Ni, 171.62 mg hm-2 for Cr, 11.64 mg hm-2 for Cu, 542.99 mg hm-2 for Mn and 36.42 mg hm-2 for Zn. Headwater streams present remarkable potential for contamination, and plant debris from riparian forests may be the most important source of heavy metals, while the stream sediment acts as a significant sink for heavy metals. These results provide new perspectives and data for understanding the ecological links between alpine forests and watersheds.

 

Keywords: Headwater streams; heavy metal storage; plant debris; sediment; water conservation land

 

ABSTRAK

Aliran kepala air adalah satu pautan penting dalam dinamik sumber dan sink logam berat antara ekosistem daratan dan akuatik dan juga amat penting bagi proses hiliran ekosistem dan kualiti air. Walau bagaimanapun, terdapat sedikit maklumat tentang aliran kepala air. Oleh yang demikian, aliran penyimpanan dan pengedaran corak Cd, Pb, Ni, Cr, Cu, Mn dan Zn dikaji dalam sepuluh aliran kepala air untuk hutan Alpin yang terletak di bahagian hulu Sungai Yangtze. Hasil menunjukkan bahawa menyimpanan logam berat setiap kawasan unit aliran dikaji adalah seperti berikut: 0.95 mg·m-2 untuk Cd, 8.36 mg m-2 untuk Pb, 1.98 m mg-2 bagi Ni, 136.98 mg m-2 untuk Cr, 9.29 mg m-2 untuk Cu, 433.39 mg m-2 untuk Mn dan 29.07 mg m-2 untuk Zn; sementara penyimpanan logam berat setiap unit luas kawasan tadahan adalah seperti berikut: 1.19 mg hm-2 untuk Cd, 10.47 mg hm-2 untuk Pb, 2.48 mg hm-2 untuk Ni, 171.62 mg hm-2 untuk Cr, 11.64 mg hm-2 untuk Cu, 542.99 mg hm-2 untuk Mn dan 36.42 mg hm-2 untuk Zn. Aliran kepala air menunjukkan potensi yang luar biasa bagi pencemaran dan sisa loji dari hutan riparia mungkin menjadi sumber terpenting logam berat, sementara endapan sungai bertindak sebagai sinki yang ketara bagi logam berat. Keputusan ini memberikan perspektif yang baru dan data untuk memahami hubungan ekologi antara hutan Alpin dan tadahan air.

 

Kata kunci: Aliran kepala air; penyimpanan logam berat; sedimen; sisa loji kawasan pulihara air

REFERENCES

Alexander, R., Boyer, E., Smith, R., Schwarz, G. & Moore, R. 2007. The role of headwater streams in downstream water quality. Journal of the American Water Resources Association 43(1): 41-59.

Allan, J.D. & Castillo, M.M. 2007. Stream Ecology. Netherlands: Springer.

Baillie, B. & Davies, T. 2002. Influence of large woody debris on channel morphology in native forest and pine plantation streams in the Nelson region, New Zealand. New Zealand Journal of Marine and Freshwater Research 36: 763-774.

Bing, H., Wu, Y., Zhou, J., Ming, L., Sun, S. & Li, X. 2014. Atmospheric deposition of lead in remote high mountain of eastern Tibetan Plateau, China. Atmospheric Environment 99: 425-435.

Burrows, R.M., Magierowski, R.H., Fellman, J.B. & Barmuta, L.A. 2012. Woody debris input and function in old-growth and clear-felled headwater streams. Forest Ecology Management 286: 73-80.

Caplat, C., Texier, H., Barillier, D. & Lelievre, C. 2005. Heavy metals mobility in harbour contaminated sediments: The case of Port-en-Bessin. Marine Pollution Bulletin 50: 504-511.

Chen, X., Wei, X., Scherer, R., Luider, C. & Darlington, W. 2006. A watershed scale assessment of in-stream large woody debris patterns in the southern interior of British Columbia. Forest Ecology and Management 229(1): 50-62.

Colin, V., Villegas, L. & Abate, C. 2012. Indigenous microorganisms as potential bioremediators for environments contaminated with heavy metals. International Biodeterioration & Biodegradation 69: 28-37.

Farkas, A., Erratico, C. & Vigano, L. 2007. Assessment of the environmental significance of heavy metal pollution in surficial sediments of the River Po. Chemosphere 68: 761-768.

Gadd, G. 2010. Metals, minerals and microbes: Geomicrobiology and bioremediation. Microbiology 156: 609-643.

Gomi, T., Sidle, R. & Rechardson, J. 2002. Understanding processes and downstream linkages of headwater systems. Bioscience 52(10): 905-916.

Gonçalves, J. & Callisto, M. 2013. Organic-matter dynamics in the riparian zone of a tropical headwater stream in Southern Brasil. Aquatic Botany 109: 8-13.

Graça, M. 2001. The role of invertebrates on leaf litter decomposition in streams - A review. International Review of Hydrobiology 86(4-5): 383-393.

Harmon, M. & Sexton, J. 1996. Guidelines for Measurements of Woody Detritus in Forest Ecosystems (US LTER Publication No. 20). US LTER Network office, University of Washington, Seattle, WA, USA.

He, J., Yang, W., Li, H., Xu, L., Ni, X., Tan, B., Zhao, Y. & Wu, Y. 2015. Forest gaps inhibit foliar litter Pb and Cd release in winter and inhibit Pb and Cd accumulation in growing season in an Alpine Forest. PLoS ONE 10(6): e0131528. doi: 10.1371/journal.pone.0131528.

Hu, J., Zhou, S., Wu, P. & Qu, K. 2017. Assessment of the distribution, bioavailability and ecological risks of heavy metals in the lake water and surface sediments of the Caohai plateau wetland, China. PloS ONE 12(12): e0189295.

Jackson, K. & Wohle, E. 2015. Instream wood loads in montane forest streams of the Colorado Front Range, USA. Geomorphology 234: 161-170.

Lepori, F., Palm, D. & Malmqvist, B. 2005. Effects of stream restoration on ecosystem functioning: Detritus retentiveness and decomposition. Journal of Applied Ecology 42: 228-238.

Loska, K. & Wiechuła, D. 2003. Application of principal component analysis for the estimation of source of heavy metal contamination in surface sediments from the Rybnik Reservoir. Chemosphere 51: 723-733.

Ma, X., Zuo, H., Tian, M., Zhang, L., Meng, J., Zhou, X., Min, N., Chang, X. & Liu, Y. 2016. Assessment of heavy metals contamination in sediments from three adjacent regions of the Yellow River using metal chemical fractions and multivariate analysis techniques. Chemosphere 144: 264-272.

Mccoll, R. 1974. Self-purification of small freshwater streams: Phosphate, nitrate, and ammonia removal. New Zealand Journal of Marine and Freshwater Research 8(2): 375-388.

Nakano, S. & Murakami, M. 2001. Reciprocal subsidies: Dynamic interdependence between terrestrial and aquatic food webs. Proceedings of the National Academy of Sciences 98(1): 166-170.

Passos, E., Alves, J., Garcia, C. & Costa, A. 2011. Metal fractionation in sediments of the Sergipe River, Northeast, Brazil. Journal of the Brazilian Chemical Society 22(5): 828-835.

Peng, Y., Yang, W., Wang, B., Zhang, H., Yue, K. & Wu, F. 2015. Heavy metal output and content of headwater streams in an alpine forest in the upper reaches of the Yangtze River. Fresenius Environmental Bulletin 24(1): 132-138.

Pennington, P. & Watmough, S. 2015. The biogeochemistry of metal- contaminated peatlands in Sudbury, Ontario, Canada. Water, Air, and Soil Pollution 226: 326.

Perez, J., Descals, E. & Pozo, J. 2012. Aquatic hyphomycete communities associated with decomposing alder leaf litter in reference headwater streams of the Basque Country (northern Spain). Microbiology Ecology 64: 279-290.

Pulatsü, S. & Topçu, A. 2015. Review of 15 years of research on sediment heavy metal contents and sediment nutrient release in inland aquatic ecosystems, Turkey. Journal of Water Resource and Protection 7: 85-100.

Richardson, J. & Danehy, R.A. 2007. Synthesis of the ecology of headwater streams and their Riparian zones in temperate forests. Forest Science 53(2): 131-147.

Ryan, S., Bishop, E. & Daniels, J. 2014. Influence of large wood on channel morphology and sediment storage in headwater mountain streams, Fraser Experimental Forest, Colorado. Geomorphology 217: 73-88.

Singh, S. & Mishra, A. 2014. Spatiotemporal analysis of the effects of forest covers on stream water quality in Western Ghats of peninsular India. Journal of Hydrology 519: 214- 224.

Soares, E. & Soares, H. 2013. Cleanup of industrial effluents containing heavy metals: A new opportunity of valorising the biomass produced by brewing industry. Applied Microbiology and Biotechnology 97(15): 6667-6675.

Souza, A., Fonseca, D., Libório, R. & Tanaka, M. 2013. Influence of riparian vegetation and forest structure on the water quality of rural low-order streams in SE Brazil. Forest Ecology and Management 298: 12-18.

Stead-dexter, K. & Ward, N. 2004. Mobility of heavy metals within freshwater sediments affected by motorway stormwater. Science of the Total Environment 334-335: 271-277.

Stevens, V. 1997. The ecological role of coarse woody debris: An overview of the ecological importance of CWD in BC Forests. British Columbia: Ministry of Forests Research Program. Working Paper 30.

Tang, W., Shan, B., Zhang, W., Zhang, H., Wang, L. & Ding, Y. 2014. Heavy metal pollution characteristics of surface sediments in different aquatic ecosystems in eastern China: A comprehensive understanding. PLoS ONE 9(9): e108996. doi: 10.1371/journal.pone.0108996.

Tank, J., Rosi-Marshall, E., Griffiths, N., Entrekin, S. & Stephen, M. 2010. A review of allochthonous organic matter dynamics and metabolism in streams. The North American Benthological Society 29(1): 118-146.

Tokatli, C., Kose, E., Cicek, A. & Uysal, K. 2013. Copper, zinc and lead concentrations of epipelic diatom frustules in Porsuk Stream (Sakarya River Basin, Turkey). Russian Journal of Ecology 44(4): 349-352.

Wallace, J., Eggert, S., Meyer, J. & Webster, J. 1997. Multiple trophic levels of a forest stream linked to terrestrial litter inputs. Science 277: 102-104.

Water Quality-Guidance on Sampling Techniques (HJ 494-2009). 2009. Ministry of Environmental Protection of the People’s Republic of China.

Water Quality-Digestion of Total Metals-Microwave Assisted Acid Digestion Method (HJ 678-2013). 2013. Ministry of Environmental Protection of the People’s Republic of China.

West, P.W. 2009. Tree and Forest Measurement. Switzerland: Springer International Publishing.

Wojtkowska, M., Bogacki, J. & Witeska, A. 2016. Assessment of the hazard posed by metal forms in water and sediments. Science of the Total Environment 551-552: 387-392.

Wu, B., Wang, G., Wu, J., Fu, Q. & Liu, C. 2014. Sources of heavy metals in surface sediments and an ecological risk assessment from two adjacent plateau reservoirs. PLoS ONE 9(7): e102101. doi: 10.1371/journal.pone.0102101.

Yang, W. & Wang, K. 2003. Advances in soil ecosystem process of subalpine forest in Western Sichuan. World Science- Technology Research and Development 25(5): 33-40.

 

*Corresponding author; email: wufzchina@163.com