Sains Malaysiana 48(8)(2019): 1583–1592

http://dx.doi.org/10.17576/jsm-2019-4808-03

 

Effects of Quarry Blasting Towards the Residential Area at Kangkar Pulai, Johor, Malaysia

(Kesan Letupan Kuari kepada Kawasan Perumahan di Kangkar Pulai, Johor, Malaysia)

 

KARTHIGEYAN A/L AL. RAMANATHAN* & RINI ASNIDA ABDULLAH

 

School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor Darul Takzim, Malaysia

 

Received: 8 January 2019/Accepted: 1 June 2019

 

ABSTRACT

The drill and blast technique have been widely used recently due to demand for natural building materials like rock aggregates. However, the intensity of blasting effects has been questioned on its validity towards the nearby residential areas. In this study, the blasting effects from Quarry A and B has been assessed based on constant location of the residential areas (Taman Pulai Hijauan and Taman Bandar Baru Kangkar Pulai, respectively) using the empirical formulations only. The blasting effects are highly dependent on the maximum instantaneous charge in blast holes (Q) which are dependent on parameters like number of blast holes, charge per column, Powder Factor and number of blast per delay. This study was able to show that with an increase of the independent variables, the Q value rises significantly. The average Q value from Quarry A (181.07 kg) was slightly higher than Quarry B (180.22 kg). The correlations made for each quarry showed that Quarry A had a better regression line with lower standard error due to the high number of blast data obtained during the monitoring period of about 1 year and 8 months. Meanwhile, the impact assessments showed higher PPV (Peak Particle Velocity) value at higher Q holding blast holes in Quarry A compared to Quarry B and decreases with increasing distance. The similar relationship was observed for the air blast assessments. Yet, all of the blasts produced are relatively within safe limits which are less than 5 mm/s Mineral & Geosciences Department (JMG) and less than 125 dBL United States Bureau of Mining (USBM). Thus, extra precaution can be taken by estimating the suitable Q value such as A (97.66 kg) and B (271.68 to 495.01 kg) to maintain safe blasting operations and prevent damages to the nearby residential areas.

 

Keywords: Air blast; blasting effects; drill and blast; independent variables; peak particle velocity

 

ABSTRAK

Teknik gerudi dan letupan digunakan secara meluas disebabkan permintaan terhadap bahan binaan semula jadi seperti batu agregat. Walau bagaimanapun, keamatan impak letupan terhadap kawasan perumahan yang berdekatan kurang diteliti sebelum ini. Dalam kajian ini, kesan letupan dari Kuari A dan B telah dinilai berdasarkan lokasi yang tetap daripada kawasan perumahan (Taman Bandar Baru Kangkar Pulai dan Taman Pulai Hijauan) menggunakan kaedah empirik sahaja. Kesan letupan adalah sangat bergantung kepada cas berseketikaan maksimum (Q) yang bergantung kepada parameter seperti bilangan lubang letupan, cas setiap lubang, faktor serbuk dan bilangan letupan setiap lengah. Kajian ini menunjukkan bahawa dengan peningkatan pemboleh ubah bebas, nilai Q meningkat. Nilai purata Q Kuari A (181.07 kg) adalah lebih tinggi daripada Kuari B (180.22 kg). Korelasi yang dibuat menunjukkan bahawa Kuari A mempunyai garisan regresi yang lebih baik dengan ralat piawai yang lebih rendah kerana jumlah data letupan yang tinggi diperoleh semasa tempoh pemantauan selama 1 tahun dan 8 bulan. Manakala, penilaian impak menunjukkan nilai PPV lebih tinggi apabila nilai Q lebih tinggi dalam Kuari A berbanding Kuari B dan berkurangan dengan peningkatan jarak. Hubungan yang sama telah dilihat dalam penilaian letupan udara. Walau bagaimanapun, semua letupan berada dalam had yang selamat iaitu < 5 mm/s (JMG) dan < 125 dBL (USBM). Oleh itu, langkah berjaga-jaga boleh diambil dengan menganggarkan nilai Q yang sesuai seperti A (97.66 kg) dan B (271.68 - 495.01 kg) untuk memastikan operasi letupan yang selamat dan mengelakkan kerosakan pada kawasan perumahan yang berhampiran.

 

Kata kunci: Gerudi dan letupan; impak letupan; letupan udara; pemboleh ubah bebas; PPV

REFERENCES

Aloui, M., Bleuzen, Y., Essefi, E. & Abbes, C. 2016. Ground vibrations and air blast effects induced by blasting in open pit mines: Case of Metlaoui Mining Basin, Southwestern Tunisia. Journal of Geology & Geophysics 5(3): 1-8.

Baxter, N.L. 2001. Troubleshooting vibration problems: A compilation of case histories. Proceedings of the 55th Meeting of the Society for Machinery Failure Prevention Technology, Virginia Beach, 2 - 5 April, Virginia. pp. 467-482.

Blasting Training Module. 2004. Office of Surface Mining Reclamation and Enforcement. USA: Department of the Interior’s Office of Surface Mining.

Dick, R.A., Fletcher, L.R. & Andrea, D.V. 1987. Explosives and Blasting Procedures Manual. Bureau of Mines Information Circular 8925: 57-74.

Department of Environment (DOE). 2007. The Planning Guidelines for Vibration Limits and Control in the Environment. Malaysia: Min. of Natural Resources & Environment.

Environmental Requirements: A Guide for Investors. 2010. Department of Environment. Malaysia: Ministry of Natural Resources and Environment.

Evans, M.K. 2002. Practical Business Forecasting. 1st ed. UK: Blackwell Publish.

Hashim, M.H.M. & Khider, M.A. 2017. Improving blast design for optimum rock breakage sustainable operations. International Journal of Society for Social Management System 11(1): 224-234.

Hutchison, C.S. 1997. Granite emplacement and tectonic subdivision of Peninsular Malaysia. Geological Society of Malaysia Bulletin 9: 187-207.

IBM SPSS Data Collection Divesture. 2016. Divesture Announc. of IBM. USA: IBM.

Jabatan Mineral & Geosains (JMG). 2004. Geo. Map of West Malaysia Mod. 8th ed. 1: 750,000. Kuala Lumpur.

Juna, A.A.A.G. & Syed, F.S.H. 2013. The importance of K and β values for scaled distance technique for prediction of ground vibrations level induced during granite quarry blasting for Peninsular Malaysia. National Geoscience Conference 25-26 May. Ipoh, Perak, B16.

Karlos, V. & Solomos, G. 2013. Calculation of Blast Loads for Application to Structural Components. Italy: JRC Technical Reports.

Kopp, J.W. & Siskind, D.W. 1986. Effects of Millisecond- Delay Intervals on Vibration and Air Blast from Surface Coal Mine Blasting. Bureau of Mines Report of Investigation 9026: 44.

Krehl, P.O.K. 2008. History of Shock Waves, Explosions and Impact: A Chronological and Biographical Reference. 1st ed. Germany: Springer.

Kumar, R., Choudhury, D. & Bhargava, K. 2016. Determination of blast induced ground vibration equations for rocks using mechanical and geological properties. Journal of Rock Mechanics and Geotechnical Engineering 8(3): 341-349.

Lamotte, A. 1978. Blaster’s Handbook. 16th ed. Wilmington, Delaware: DuPont de Nemours & INC.

Mohamad, E.T., Danial, J.A. & Hossein, M. 2013. The effect of geological structure and powder factor in flyrock accident, Masai, Johor, Malaysia. EJGE 18: 5661-5672.

Niklasson, B., Olsson, M. & Beyglou, A. 2014. Does Charge Confinement Affect the Vibration Level in Blasting? Phase 1 - Feasibility Study. BeFo Report 132, Stockholm.

NONEL User's Manual. 2008. NONEL System. USA: DYNO Nobel.

New South Wales (NSW) Minerals Council. 2009. Fact Sheet- Blasting and the NSW Minerals Industry. Sydney, Australia: NSWMC.

Sazid, M. & Singh, T.N. 2012. Economically and environmental friendly control blasting results through stemming plug. Int. Mining Congress and Expo. 26 - 29 Oct. Tehran, Iran. pp. 1-13.

Sharma, A. 2017. Estimating the effects of blasting vibrations on the high wall stability. MSc Thesis, University of Kentucky, USA (Unpublished).

Shirani Faradonbeh, R., Jahed Armaghani, D., Abdul Majid, M.Z., Tahir, M.D., Ramesh, M., Murlidhar, B., Monjezi, M. & Wong, H.M. 2016. Prediction of ground vibration due to quarry blasting based on gene expression programming: A new model for peak particle velocity prediction. International Journal of Environmental, Science and Technology 13: 1453-1464.

Sia, C.C. & Rozi, M.U. 2002. Kajian geokimia batuan igneus sekitar Gunung Pulai, Johor. GSM Annual Geological Conference, Kota Bharu, Kelantan. pp. 71-80.

Singh, P.K., Roy, M.P., Paswan, R.K., Sarim, Md., Kumar, S. & Jha, R.R. 2016. Rock fragmentation control in opencast blasting. Journal of Rock Mechanics and Geotechnical Engineering 8(2): 225-237.

Siskind, D.E., Stagg, M.S., Kopp, J.W. & Dowding, C.H. 1980. Structure Response and Damage Produced by Ground Vibrations from Surface Blasting, RI 8507. Washington: United States Bureau of Mines (USBM).

Yilmaz, T., Karaman, K., Cihangir, F., Ercikdi, B. & Kersimal, A. 2016. Effect of tunnel blasting operation on the surface penstock pipe. IOP Conference Series: Earth and Environmental Sciences 44: 052010.

 

*Corresponding author; email: karthigeyan-1994@graduate.utm.my

 

 

 

previous