Sains Malaysiana 48(8)(2019): 1753–1759

http://dx.doi.org/10.17576/jsm-2019-4808-22

 

Synthesis and Characterizations of Hydrophilic pHEMA Nanoparticles via Inverse Miniemulsion Polymerization

(Sintesis dan Pencirian Zarah Nano Hidrofil pHEMA melalui Pempolimeran Miniemulsi Songsang)

 

ZALIKHA ISMAIL1 & NOOR ANIZA HARUN1,2*

 

1Faculty of Science & Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu Darul Iman, Malaysia

 

2Advance NanoMaterials (ANOMA) Research Group, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu Darul Iman, Malaysia

 

Received: 7 February 2019/Accepted: 26 May 2019

 

ABSTRACT

This study highlights on the development of hydrophilic polymer nanoparticles prepared via inverse miniemulsion polymerization, a robust technique to prepare hydrophilic and aqueous-soluble polymeric nanoparticles. 2-hydroxyethyl methacrylate (HEMA) is excellent candidate for homo-polymerization due to its biocompatibility and biodegradability characteristic with high hydrophilicity properties. The influence of synthesis parameters including the effects of sonication time ranging from 10 - 30 min and sonication amplitude up to 60% towards the particles size and morphology of pHEMA nanoparticles are investigated. The formation of pHEMA nanoparticles are confirmed by Fourier Transform Infrared (FTIR). The morphology of polymer nanoparticles has been determined using Scanning Electron Microscope (SEM) and Transmission Electron Microscopy (TEM). Dynamic light scattering (DLS) indicates the mean diameters of pHEMA nanoparticles were in a range of 100 – 200 nm. The hydrophilic polymer nanoparticles obtained are expected to facilitate in the fabrication of inorganic-polymer composite nanoparticles especially in biological applications.

 

Keywords: HEMA; hydrophilic; inverse miniemulsion; nanoparticles

 

ABSTRAK

Kajian ini menonjolkan pembangunan zarah nano polimer dengan ciri hidrofil yang lebih baik yang disediakan melalui pempolimeran miniemulsi songsang, suatu teknik yang teguh untuk menyediakan zarah nano polimer hidrofil dan larut akueus. 2-hidroksi metakrilat (HEMA) adalah bahan yang sangat baik untuk pempolimeran-homo kerana sifat biokeserasian dan biodegradasi dengan sifat hidrofil yang tinggi. Pengaruh parameter sintesis termasuk kesan masa sonikasi antara 10 - 30 min dan amplifikasi sonikasi sehingga 60% ke arah saiz zarah dan morfologi zarah nano pHEMA dikaji. Pembentukan zarah nano pHEMA disahkan oleh Spektroskopi Inframerah Transformasi Fourier (FTIR). Morfologi zarah nano polimer telah ditentukan menggunakan Mikroskop Elektron Imbasan (SEM) dan Mikroskop Elektron Transmisi (TEM). Penyebaran cahaya dinamik (DLS) menunjukkan diameter purata zarah nano pHEMA berada dalam lingkungan 100 - 200 nm. Zarah nano polimer hidrofilik yang diperoleh dijangka memudahkan dalam fabrikasi zarah nano komposit polimer-bukan organik terutamanya dalam aplikasi biologi.

 

Kata kunci: HEMA; hidrofilik; pempolimeran songsang; zarah nano

REFERENCES

Antonietti, M. & Landfester, K. 2002. Polyreactions in miniemulsions. Progress in Polymer Science 27(4): 689-757.

Bajpai, A.K., Shukla, S.K., Bhanu, S. & Kankane, S. 2008. Responsive polymers in controlled drug delivery. Progress in Polymer Science 33: 1088-1118.

Bodas, D.S., Desai, S.M. & Gangal, S.A. 2005. Desposition of plasma-polymerized hydroxhethyl methacrylate (HEMA) on silicon in presnce of argon plasma. Applied Surface Science 245: 186-190.

Cao, Z., Yang, L., Yan, Y., Shang, Y., Ye, Q., Qi, D., Zierner, U., Shan, G. & Landfester, K. 2013. Fabrication of nanogel core-silica shell and hollow silica nanoparticles via an interfacial sol-gel process triggered by transition-metal salt in inverse systems. Journal of Colloid and Interface Science 406: 139-147.

Capek, I. 2010. On inverse miniemulsion polymerization of conventional water-soluble monomers. Advances in Colloid and Interface Science 156(1-2): 35-61.

Chen, M. & Yin, M. 2014. Design and development of fluorescent nanostructures for bioimaging. Progress in Polymer Science 39(2): 365-395.

Elbert, D.L. 2011. Liquid-liquid two-phase systems for the production of porous hydrogels and hydrogel microspheres for biomedical applications: A tutorial review. Acta Biomaterial 7(1): 31-56.

Faridi-Majidi, R., Sharifi-Sanjani, N. & Agend, F. 2006. Encapsulation of magnetic nanoparticles with polystyrene via emulsifier-free miniemulsion polymerization. Thin Solid Films 515(1): 368-374.

Gao, Q., Wang, C., Liu, H., Wang, C., Liu, X. & Tong, Z. 2009. Suspension polymerization based on inverse pickering emulsion droplets for thermo-sensitive hybrid microcapsules with tunable supracolloidal structures. Polymer 50(12): 2587-2594.

Gavasane, A.J. & Pawar, H.A. 2014. Synthetic biodegradable polymers used in controlled drug delivery system: An overview. Clinical Pharmacology & Biopharmaceutics 3(2): 1-7.

Ghosh, P.K. 2000. Hydrophilic polymeric nanoparticles as drug carriers. Indian Journal of Biochemistry & Biophysics 37: 273-282.

Gulsen, D. & Chauhan, A. 2005. Dispersion of microemulsion drops in HEMA hydrogel: A potential ophthalmic drug delivery vehicle. International Journal of Pharmaceutics 292(1-2): 95-117.

Han, H., Zhang, S., Wang, Y., Chen, T., Jin, Q., Chen, Y., Li, A. & Ji, J. 2016. Biomimetic drug nanocarriers prepared by miniemulsion polymerization for near-infrared imaging and photothermal therapy. Polymer 82: 255-261.

Harun, N.A., Horrocks, B.R. & Fulton, D.A. 2011. A miniemulsion polymerization technique for encapsulation of silicon quantum dots in polymer nanoparticles. Nanoscale 3(11): 4733-4741.

Holmes, R.L., Campbell, J.A., Linser, R., Hook, J.M. & Burford, R.P. 2011. In situ preparation of poly(2-hydroxyethyl methacrylate)-titania hybrids using γ-radiation. Polymer 52: 4471-4479.

Ismail, Z., Kassim, S. & Harun, N.A. 2017. Development of hydrophilic poly (N-vinylpyrrolidone) nanoparticles via inverse miniemulsion polymerization technique. AIP Conference Proceedings 1885(1): 020079.

Koul, V., Mohamed, R., Kuckling, D., Adler, H.J.P. & Choudhary, V. 2011. Interpenetrating polymer network (IPN) nanogels based on gelation and poly(acrylic acid) by inverse miniemulsion technique: Synthesis and characterization. Colloids and Surfaces B: Biointerfaces 83(2): 204-213.

Mirzadeh, H., Katbab, A.A., Khorasani, M.T., Burford, R.P., Gorgin, E. & Golestani, A. 1995. Cell attachment to laser-induced AAm and HEMA-grafted ethylene-propylene rubber as biomaterials: In vivo study. Biomaterials 16(8): 641-648.

Muthiah, M., Park, I.K. & Cho, C.S. 2013. Surface modification of iron oxide nanoparticles by biocompatible polymers for tissue imaging and targeting. Biotechnology Advances 31(8): 1224-1236.

Oh, J.K., Bencherif, S.A. & Matyjaszewski, K. 2009. Atom transfer radical polymerization in inverse miniemulsion: A versatile route toward preparation and functionalization of microgels/nanogels for tageted drug delivery applications. Polymer 50(19): 4407-4423.

Oh, J.K., Dong, H., Zhang, R., Matyjaszewski, K. & Schlaad, H. 2007. Preparation of nanoparticles of double-hydrophilic PEO-PHEMA block copolymers by AGET ATRP in inverse miniemulsion. Journal of Polymer Science Part A: Polymer Chemistry 45(21): 4764-4772.

Oh, J.K., Tang, C., Gao, H., Tsarevsky, N.V. & Krzysztof, M. 2006. Inverse miniemulsion ATRP: A new method for synthesis and functionalization of well-defined water-soluble/ cross-linked polymeric particles. Journal of the American Chemical Society 128(16): 5578-5584.

Pandey, S.K., Haldar, C., Patel, D.K. & Maiti, P. 2013. Biodegradable polymers for potential delivery systems for therapeutics. In Multifaceted Development and Application of Biopolymers for Biology, Biomedicine and Nanotechnology, Advances in Polymer Science, edited by Dutta P. & Dutta, J. Berlin, Heidelberg: Springer. Volume 254. pp. 169-202.

Rao, J.P. & Geckeler, K.E. 2011. Polymer nanoparticles: Preparation techniques and size control parameters. Progress in Polymer Science 36(7): 887-913.

Richez, A.P., Yow, H.N., Biggs, S. & Cayre, O.J. 2013. Dispersion polymerization in non-polar solvent: Evolution toward emerging applications. Progress in Polymer Science 38(6): 897-931.

Sarika, P.R., Anil Kumar, P.R., Raj, D.K. & James, N.R. 2015. Nanogels based n alginic aldehyde and gelatin by inverse miniemulsion technique: Synthesis and characterization. Carbohydrate Polymers 119: 118-125.

Seven, F. & Sahiner, N. 2014. Modified macroporous p(2- hydroexyethyl methacrylate) (PHEMA) cryogel composites for H2 production from hydrolysis of NaBH4. Fuel Processing Technology 128: 394-401.

Srivastava, A., Yadav, T., Sharma, S., Nayak, A. & Kumari, A. 2016. Polymers in drug delivery. Journal of Biosciences and Medicines 4: 69-84.

Tian, H., Tang, Z., Zhuang, X., Chen, X. & Jing, X. 2012. Biodegradable synthetic polymers: Preparation, functionalization and biomedical application. Progress in Polymer Science 37(2): 237-280

Tomar, N., Tomar, M., Gulati, N. & Nagaich, U. 2012. pHEMA hydrogels: Devices for ocular drug delivery. International Journal of Health & Allied Sciences 1(4): 224-230.

Xu, Z.Z., Wang, C.C., Yang, W.L., Deng, Y.H. & Fu, S.K. 2004. Encapsulation of nanosized magnetic iron oxide by polyacrylamide via inverse miniemulsion polymerization. Journal of Magnetism and Magnetic Materials 277: 136-143.

Yildiz, U. & Landfester, K. 2008. Miniemulsion polymerization of styrene in the presence of macromonomeric initiators. Polymer 49(23): 4930-4934.

 

*Corresponding author; email: nooraniza@umt.edu.my

 

 

previous