Sains Malaysiana 49(11)(2020): 2811-2820

http://dx.doi.org/10.17576/jsm-2020-4911-20

 

Electrophoretic Deposition of Carbon Nanotubes onto Zinc Substrates for Electrode Applications

(Pemendapan Elektroforetik Nanotiub Karbon ke dalam Substrat Zink untuk Aplikasi Elektrod)

 

NAPAPON MASSA-ANGKUL1, JESPER T.N. KNIJNENBURG2,3, PORNNAPA KASEMSIRI1,3, CHAIYAPUT KRUEHONG1, GÜNTHER G. SCHERER4,5, PRINYA CHINDAPRASIRT3,6 & KAEWTA JETSRISUPARB1,3*

 

1Department of Chemical Engineering, Khon Kaen University, 40002 Khon Kaen, Thailand

 

2International College, Khon Kaen University, 40002 Khon Kaen, Thailand

 

3Sustainable Infrastructure Research and Development Center, Khon Kaen University, 40002 Khon Kaen, Thailand

 

4Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam

 

5Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam

 

6Department of Civil Engineering, Khon Kaen University, 40002 Khon Kaen, Thailand

 

Received: 25 December 2019/Accepted: 22 May 2020

 

ABSTRACT

Carbon nanotubes (CNTs) as nanostructured materials have been widely used to improve electrochemical performance of electrode materials for various batteries and electrolyzers. The purpose of this work was to investigate the electrophoretic deposition (EPD) of multi-walled CNTs (MWCNTs) onto Zn plates for application in aqueous Zn ion batteries. The effects of MWCNTs on Zn oxidation and reduction were assessed using cyclic voltammetry. Before EPD, the MWCNTs were modified using H2SO4/HNO3 under reflux to improve dispersion stability in water. Acid modification shortened the MWCNTs but did not cause significant changes in crystallinity, tube diameter, and interlayer spacing. In a second step, the acid modified MWCNTs were homogeneously deposited onto a conductive Zn plate by EPD. Cyclic voltammetry data indicate that the coating of Zn with MWCNTs does not affect the Zn oxidation and reduction potential. Oxidation of Zn eventually leads to formation of a ZnO film, protecting the Zn surface from corrosion. When the protective ZnO film is dissolved, the underlying Zn is oxidized, leading to unfavorable loss of Zn. The presence of MWCNTs reduces oxidation during the cathodic sweep, implying that the MWCNT coating partially protects the underlying Zn surface from oxidation during charging. In addition, the MWCNT coated electrodes also facilitate hydrogen formation and show less oxygen limitation reaction, and could thus be envisaged as possible electrode materials for energy storage devices such as bifunctional electrodes for electrolyzers or air cathodes for batteries or fuel cells.

 

Keywords: Carbon nanotubes; electrochemistry; electrophoretic deposition; zinc electrode

 

ABSTRAK

Nanotiub karbon (CNTs) sebagai bahan nano telah digunakan secara luas untuk menambahbaik prestasi elektrokimia bahan elektrod dalam pelbagai bateri dan bahan elektrod. Tujuan kajian ini ialah untuk mengkaji pemendapan elektroforesis (EPD) CNTs berbilang dinding (MWCNTs) ke atas plat Zn untuk kegunaan dalam bateri ion Zn akues. Kesan MWCNTs ke atas pengoksidaan dan penurunan Zn telah dikaji menggunakan voltametri berkitar. Sebelum EPD, MWCNTs telah diubah suai menggunakan H2SO4/HNO3 untuk menambahbaik kestabilan penyebaran dalam air. Pengubahsuaian asid memendekkan MWCNTs tetapi tidak menyebabkan perubahan nyata dalam kehabluran, diameter tiub dan jarak antara lapisan. Pada langkah kedua, MWCNTs terubah suai asid telah dimendap ke atas plat Zn melalui proses EPD. Data voltametri berkitar menunjukkan bahawa salutan MWCNTs ke atas Zn tidak menjejaskan pengoksidaan Zn dan potensi penurunan. Pengoksidaan Zn telah menyebabkan pembentukan lapisan ZnO yang melindungi permukaan Zn daripada kakisan. Setelah lapisan ZnO terlarut, Zn pada lapisan bawah telah teroksida dan menyebabkan kehilangan Zn. Kehadiran MWCNTs telah mengurangkan pengoksidaan semasa sapuan katod, menunjukkan bahawa salutan MWCNTs telah melindungi sebahagian permukaan Zn di bawah daripada pengoksidaan semasa pengecasan. Tambahan pula, elektrod bersalut MWCNTs juga membantu pembentukan hidrogen dan menunjukkan tindak balas pengehadan oksigen, dan boleh diramal sebagai bahan elektrod dalam peralatan penyimpanan tenaga seperti elektrod dwifungsi untuk bahan elektrod atau katod udara untuk bateri dan sel fuel.

 

Kata kunci: Elektrokimia; elektrod zink; nanotiub karbon; pemendapan elektroforesis

 

REFERENCES

Besra, L. & Liu, M. 2007. A review on fundamentals and applications of electrophoretic deposition (EPD). Progress in Materials Science 52(1): 1-61.

Bockelmann, M., Reining, L., Kunz, U. & Turek, T. 2017. Electrochemical characterization and mathematical modeling of zinc passivation in alkaline solutions: A review. Electrochimica Acta 237: 276-298.

Cai, M. & Park, S.M. 1996. Spectroelectrochemical studies on dissolution and passivation of zinc electrodes in alkaline solutions. Journal of the Electrochemical Society 143(7): 2125-2131.

Che, B.D., Nguyen, B.Q., Nguyen, L.T.T., Nguyen, H.T., Nguyen, V.Q., Van Le, T. & Nguyen, N.H. 2015. The impact of different multi-walled carbon nanotubes on the X-band microwave absorption of their epoxy nanocomposites. Chemistry Central Journal 9(1): 10.

Chen, X., Gao, P., Liu, H., Xu, J., Zhang, B., Zhang, Y., Tang, Y. & Xiao, C. 2018. In situ growth of iron-nickel nitrides on carbon nanotubes with enhanced stability and activity for oxygen evolution reaction. Electrochimica Acta 267: 8-14.

Chiang, Y.C., Lin, W.H. & Chang, Y.C. 2011. The influence of treatment duration on multi-walled carbon nanotubes functionalized by H2SO4/HNO3 oxidation. Applied Surface Science 257(6): 2401-2410.

Cho, J., Konopka, K., Rozniatowski, K., García-Lecina, E., Shaffer, M.S.P. & Boccaccini, A.R. 2009. Characterisation of carbon nanotube films deposited by electrophoretic deposition. Carbon 47(1): 58-67.

Cychosz, K.A., Guillet-Nicolas, R., García-Martínez, J. & Thommes, M. 2017. Recent advances in the textural characterization of hierarchically structured nanoporous materials. Chemical Society Reviews 46(2): 389-414.

Darband, G.B., Aliofkhazraei, M. & Rouhaghdam, A.S. 2018. Three-dimensional porous Ni-CNT composite nanocones as high performance electrocatalysts for hydrogen evolution reaction. Journal of Electroanalytical Chemistry 829: 194-207.

Du, C., Heldebrant, D. & Pan, N. 2002. Preparation of carbon nanotubes composite sheet using electrophoretic deposition process. Journal of Materials Science Letters 21(7): 565-568.

Dubouis, N. & Grimaud, A. 2019. The hydrogen evolution reaction: From material to interfacial descriptors. Chemical Science 10(40): 9165-9181.

Fu, J., Cano, Z.P., Park, M.G., Yu, A., Fowler, M. & Chen, Z. 2017. Electrically rechargeable zinc-air batteries: Progress, challenges, and perspectives. Advanced Materials 29(7): 1604685.

Gómez, S., Rendtorff, N.M., Aglietti, E.F., Sakka, Y. & Suárez, G. 2016. Surface modification of multiwall carbon nanotubes by sulfonitric treatment. Applied Surface Science 379: 264-269.

Higashi, S., Lee, S.W., Lee, J.S., Takechi, K. & Cui, Y. 2016. Avoiding short circuits from zinc metal dendrites in anode by backside-plating configuration. Nature Communications 7: 11801.

Hu, J.W., Wu, Z.P., Zhong, S.W., Zhang, W.B., Suresh, S., Mehta, A. & Koratkar, N. 2016. Folding insensitive, high energy density lithium-ion battery featuring carbon nanotube current collectors. Carbon 87(C): 292-298.

Huq, M.M., Hsieh, C.T. & Ho, C.Y. 2016. Preparation of carbon nanotube-activated carbon hybrid electrodes by electrophoretic deposition for supercapacitor applications. Diamond and Related Materials 62: 58-64.

Kharissova, O.V. & Kharisov, B.I. 2014. Variations of interlayer spacing in carbon nanotubes. RSC Advances 4(58): 30807-30815.

Kim, U.J., Furtado, C.A., Liu, X., Chen, G. & Eklund, P.C. 2005. Raman and IR spectroscopy of chemically processed single-walled carbon nanotubes. Journal of the American Chemical Society 127(44): 15437-15445.

Lu, W., Xie, C., Zhang, H. & Li, X. 2018. Inhibition of zinc dendrite growth in zinc-based batteries. ChemSusChem 11(23): 3996-4006.

Maiaugree, W., Pimanpang, S., Jarernboon, W. & Amornkitbamrung, V. 2016. Influence of acid modification multiwall carbon nanotube counter electrodes on the glass and flexible dye-sensitized solar cell performance. International Journal of Photoenergy 2016: 2853046.

Mainar, A.R., Colmenares, L.C., Grande, H.J. & Blázquez, J.A. 2018. Enhancing the cycle life of a zinc-air battery by means of electrolyte additives and zinc surface protection. Batteries 4(3): 46.

Mansor, N.A., Tessonnier, J.P., Rinaldi, A., Reiche, S. & Kutty, M.G. 2012. Chemically modified multi-walled carbon nanotubes (MWCNTs) with anchored acidic groups. Sains Malaysiana 41(5): 603-609.

Moore, J.J., Kang, J.H. & Wen, J.Z. 2012. Fabrication and characterization of single walled nanotube supercapacitor electrodes with uniform pores using electrophoretic deposition. Materials Chemistry and Physics 134(1): 68-73.

Nazeeruddin, M.K., Humphry-Baker, R., Liska, P. & Grätzel, M. 2003. Investigation of sensitizer adsorption and the influence of protons on current and voltage of a dye-sensitized nanocrystalline TiO2 solar cell. The Journal of Physical Chemistry B 107(34): 8981-8987.

Nie, C., Pan, L., Li, H., Chen, T., Lu, T. & Sun, Z. 2012. Electrophoretic deposition of carbon nanotubes film electrodes for capacitive deionization. Journal of Electroanalytical Chemistry 666: 85-88.

Praveen, B.M., Venkatesha, T.V., Naik, Y.A. & Prashantha, K. 2007. Corrosion studies of carbon nanotubes–Zn composite coating. Surface & Coatings Technology 201(12): 5836-5842.

Qu, C., Cheng, F., Su, H. & Zhao, Y. 2016. Dispergation and modification of multi-walled carbon nanotubes in aqueous solution. Russian Journal of Physical Chemistry A 90(11): 2230-2236.

Saleh, T.A. 2011. The influence of treatment temperature on the acidity of MWCNT oxidized by HNO3 or a mixture of HNO3/H2SO4. Applied Surface Science 257(17): 7746-7751.

Scheibe, B., Borowiak-Palen, E. & Kalenczuk, R.J. 2010. Oxidation and reduction of multiwalled carbon nanotubes - preparation and characterization. Materials Characterization 61(2): 185-191.

Sezer, N. & Koç, M. 2019. Oxidative acid treatment of carbon nanotubes. Surfaces and Interfaces 14: 1-8.

Silva, W.M., Ribeiro, H., Seara, L.M., Calado, H.D.R., Ferlauto, A.S., Paniago, R.M., Leite, C.F. & Silva, G.G. 2012. Surface properties of oxidized and aminated multi-walled carbon nanotubes. Journal of the Brazilian Chemical Society 23(6): 1078-1086.

Thomas, B.J.C., Shaffer, M.S.P., Freeman, S., Koopman, M., Chawla, K.K. & Boccaccini, A.R. 2006. Electrophoretic deposition of carbon nanotubes on metallic surfaces. Key Engineering Materials 314: 141-146.

Thomas, B.J.C., Boccaccini, A.R. & Shaffer, M.S.P. 2005. Multi-walled carbon nanotube coatings using Electrophoretic Deposition (EPD). Journal of the American Ceramic Society 88(4): 980-982.

Triamthaisong, S., Kruehong, C., Jarernboon, W., Amornkitbamrung, V., Chindaprasirt, P. & Jetsrisuparb, K. 2018. Development of composite electrodes containing geopolymer binder for electrochemical applications. Journal of Engineering Science and Technology 13(10): 3017-3028.

Varga, M., Izak, T., Vretenar, V., Hozak, H., Holovsky, J., Artemenko, A., Hulman, M., Skakalova, V., Lee, D.S. & Kromka, A. 2017. Diamond/carbon nanotube composites: Raman, FTIR and XPS spectroscopic studies. Carbon 111: 54-61.

Wang, K., Pei, P., Ma, Z., Chen, H., Xu, H., Chen, D. & Wang, X. 2015. Dendrite growth in the recharging process of zinc-air batteries. Journal of Materials Chemistry A 3(45): 22648-22655.

Wei, X.P., Zhang, R.Q., Wang, L.B., Luo, Y.L., Xu, F. & Chen, Y.S. 2019. Novel multi-walled carbon nanotubes decorated with gold nanoparticles with poly (2-methacryloyloxyethyl ferrocenecarboxylate) grafted on to form organic-inorganic nanohybrids: Preparation, characterization, and electrochemical sensing applications. Journal of Materials Chemistry C 7(1): 119-132.

Werder, T., Walther, J.H., Jaffe, R.L., Halicioglu, T., Noca, F. & Koumoutsakos, P. 2001. Molecular dynamics simulation of contact angles of water droplets in carbon nanotubes. Nano Letters 1(12): 697-702.

Xu, W., Lu, Z., Sun, X., Jiang, L. & Duan, X. 2018. Superwetting electrodes for gas-involving electrocatalysis. Accounts of Chemical Research 51(7): 1590-1598.

Ye, L., Wen, K., Zhang, Z., Yang, F., Liang, Y., Lv, W., Lin, Y., Gu, J., Dickerson, J.H. & He, W. 2016. Highly efficient materials assembly via electrophoretic deposition for electrochemical energy conversion and storage devices. Advanced Energy Materials 6(7): 1502018.

Zhang, J., Zou, H., Qing, Q., Yang, Y., Li, Q., Liu, Z., Guo, X. & Du, Z. 2003. Effect of chemical oxidation on the structure of single-walled carbon nanotubes. Journal of Physical Chemistry B 107(16): 3712-3718.

Zhao, L. & Gao, L. 2003. Stability of multi-walled carbon nanotubes dispersion with copolymer in ethanol. Colloids and Surfaces A: Physicochemical and Engineering Aspects 224(1-3): 127-134.

 

*Corresponding author; email: kaewta@kku.ac.th

 

 

 

 

previous