Sains Malaysiana 49(12)(2020): 3081-3087

http://dx.doi.org/10.17576/jsm-2020-4912-20

 

Mechanical Strength Enhancement of Porous Nanocrystalline-Silicon (pnc-Si) Membrane via Titanium-oxide (Ti-O) Coating

(Peningkatan Kekuatan MekanikalMembran Silikon Nano-kristal Poros (pnc-Si) dengan Penglitup Titanium-oksida (Ti-O))

 

RHONIRA LATIF*, MUHAMMAD FAHMI JAAFAR, MOHD FAIZAL AZIZ & BURHANUDDIN YEOP MAJLIS

 

Institut Kejuruteraan Mikro dan Nanoelektronik, Universiti Kebangsaan Malaysia, Jalan Bangi, 43600 Bangi, Selangor Darul Ehsan, Malaysia

 

Received: 19 August 2020/Accepted: 27 August 2020

 

ABSTRACT

Porous nanocrystalline silicon (pnc-Si) membrane is mainly studied as a blood filtration membrane, mimicking the glomerulus filtration membrane of a human kidney. However, the pnc-Si material itself is not hemocompatible and enormous membrane area to thickness ratio makes the membrane to be easily fractured. Silicon surface modification via titanium-oxide (Ti-O) thin film layer deposition has been proven to be hemocompatible and the presence of Ti-O layer has been numerically studied to give higher membrane flexural strength. In this work, square pnc-Si membranes of 2 mm × 2 mm × 20 nm size have been fabricated with and without Ti-O layer. Point loading-unloading nanoindentation method has been performed and the membranes’ displacement behaviour subjected to point loads is studied. The pnc-Si membranes with Ti-O layer were found to attain higher fracture strength, membrane bending stiffness and average hardness with the increase of ~20, ~11 and ~24%, respectively, compared to bare pnc-Si membranes. The mechanical strength of a free-standing pnc-Si membrane is improved by depositing a Ti-O thin film layer on the membrane structure.

 

Keywords: Mechanical strength; nanoindentation; pnc-Si membrane; Ti-O thin film

 

ABSTRAK

Membran silikon nano-kristal poros (pnc-Si) dikaji sebagai membran penapisan darah, meniru membran penapisan glomerulus buah pinggang manusia. Walau bagaimanapun, bahan pnc-Si itu sendiri tidakhemoserasi dan nisbah keluasan membran kepada ketebalan adalah sangat besar yang menjadikan membran mudah patah. Pengubahsuaian permukaan silikon melalui pemendapan lapisan filem tipis titanium-oksida (Ti-O) telah terbuktihemoserasi dan kehadiran lapisan Ti-O telah dikaji secara analisis berangka bahawa lapisan tambahan ini mampu memberikan kekuatan lenturan membran yang lebih tinggi. Dalam kajian ini, membran pnc-Si yang berbentuk petak dan berukuran 2 mm × 2 mm × 20 nm telah difabrikasi dengan dan tanpa lapisan Ti-O. Kaedah pelekukan nano pemuatan-bongkar titik telah dilakukan dan tingkah laku anjakan membran yang dikenakan daya titik dikaji. Membran pnc-Si dengan lapisan Ti-O didapati mempunyai nilai kekuatan fraktur, kekakuan lenturan membran dan purata kekerasan yang lebih baik dengan peningkatan masing-masing sebanyak ~ 20, ~ 11 dan ~ 24% berbanding dengan membran pnc-Si tanpa salut. Kekuatan mekanikal membran pnc-Si yang berdiri bebas telah ditambah baik dengan meletakkan lapisan filem nipis Ti-O pada struktur membran.

 

Kata kunci: Filem nipis Ti-O; kekuatan mekanik; membran pnc-Si; pelekukan nano

 

REFERENCES

Agrawal, A.A., Nehilla, B.J., Reisig, K.V., Gaborski, T.R., Fang, D.Z., Striemer, C.C., Fauchet, P.M. & McGrath, J.L. 2010. Porous nanocrystalline silicon membranes as highly permeable and molecularly thin substrates for cell culture. Biomaterials 31(20): 5408-5417.

Ahmadi, M., Gorbet, M. & Yeow, J.T.W. 2013. In vitro clearance and hemocompatibility assessment of ultrathin nanoporous silicon membranes for hemodialysis applications using human whole blood. Blood Purification 35(4): 305-313.

Albrektsson, T., Brånemark, P.I., Hansson, H.A., Kasemo, B., Larsson, K., Lundström, I., McQueen, D.H. & Skalak, R. 1983.  The interface zone of inorganic implants in vivo: Titanium implants in bone. Annals of Biomedical Engineering 11(1): 1-27.

DesOrmeaux, J.P.S., Winans, J.D., Wayson, S.E., Gaborski, T.R., Khire, T.S., Striemer, C.C. & McGrath, J.L. 2014. Nanoporous silicon nitride membranes fabricated from porous nanocrystalline silicon templates. Nanoscale 6(18): 10798-10805.

Fang, D.Z., Striemer, C.C., Gaborski, T.R., McGrath, J.L. & Fauchet, P.M. 2010. Methods for controlling the pore properties of ultra-thin nanocrystalline silicon membranes. Journal of Physics: Condensed Matter 22(45): 454134.

Gaborski, T.R., Snyder, J.L., Striemer, C.C., Fang, D.Z., Hoffman, M., Fauchet, P.M. & McGrath, J.L. 2010. High-performance separation of nanoparticles with ultrathin porous nanocrystalline silicon membranes. ACS Nano 4(11): 6973-6981.

Huang, N., Yang, P., Leng, Y.X., Chen, J.Y., Sun, H., Wang, J., Wang, G.J., Ding, P.D., Xi, T.F. & Leng, Y. 2003. Hemocompatibility of titanium oxide films. Biomaterials 24(13): 2177-2187.

Jaafar, M.F., Latif, R. & Majlis, B.Y. 2018. Influence of titanium oxide coating on mechanical properties of porous nanocrystalline silicon membrane. 2018 IEEE International Conference on Semiconductor Electronics (ICSE). pp. 49-52.

Johnson, D.G., Khire, T.S., Lyubarskaya, Y.L., Smith, K.J.P., DesOrmeaux, J.P.S., Taylor, J.G., Gaborski, T.R., Shestopalov, A.A., Striemer, C.C. & McGrath, J.L. 2013. Ultrathin silicon membranes for wearable dialysis. Advances in Chronic Kidney Disease 20(6): 508-515.

Jȯzwik, M., Delobelle, P., Gorecki, C., Sabac, A., Nieradko, L., Meunier, C. & Munnik, F. 2004. Optomechanical characterisation of compressively prestressed silicon oxynitride films deposited by plasma-enhanced chemical vapour deposition on silicon membranes. Thin Solid Films 468(1-2): 84-92.

Kasemo, B. & Lausmaa, J. 1985. Metal selection and surface characteristics. In Tissue-Integrated Prostheses, edited by Brånemark, P-I., Zarb, G. & Albrektsson, T. Chicago: Quintessence Publishing Co.

Lausmaa, J., Kasemo, B. & Mattsson, H. 1990. Surface spectroscopic characterization of titanium implant materials. Applied Surface Science 44(2): 133-146.

Li, Y., Chen, Y., Liu, J.R., Hu, Q.M. & Yang, R. 2016. Cooperative effect of silicon and other alloying elements on creep resistance of titanium alloys: Insight from first-principles calculations. Scientific Reports 6: 30611.

Martins, P., Delobelle, P., Malhaire, C., Brida, S. & Barbier, D. 2009. Bulge test and AFM point deflection method, two technics for the mechanical characterisation of very low stiffness freestanding films. The European Physical Journal Applied Physics 45(1): 10501.

Merle, B., Nicholson, K.S., Herbert, E.G. & Göken, M. 2016. An improved method for point deflection measurements on rectangular membranes. Materials & Design 109: 485-491.

Ozaki, T., Koga, T., Fujitsuka, N., Makino, H., Hohjo, H. & Kadoura, H. 2018. Biaxial flexure testing of free-standing thin film membrane with nanoindentation system. Sensors and Actuators A: Physical 278: 48-59.

Parr, G.R., Gardner, L.K. & Toth, R.W. 1985. Titanium: The mystery metal of implant dentistry. Dental materials aspects. Journal of Prosthetic Dentistry 54(3): 410-414.

Poilane, C., Delobelle, P., Lexcellent, C., Hayashi, S. & Tobushi, H. 2000. Analysis of the mechanical behavior of shape memory polymer membranes by nanoindentation, bulging and point membrane deflection tests. Thin Solid Films 379(1-2): 156-165.

Qin, H., Jin, J., Peng, X. & Ichinose, I. 2010. Mechanical properties of free-standing single layers of metallic nanocrystals. Journal of Materials Chemistry 20(5): 858-861.

Steinemann, S. 1991. The properties of titanium. In Oral Implantol: Basics, ITI Hollow Cylinder System, edited by Schroeder, A., Sutter, F. & Krekeler, G. Stuttgart: Thieme.

Wang, T.H., Fang, T.H., Kang, S.H. & Lin, Y.C. 2007. Nanoindentation characteristics of clamped freestanding Cu membranes. Nanotechnology 18(13): 135701.

Williams, D.F. 1981. Fundamental Aspects of Biocompatibility. Boca Raton: CRC Press.            

 

*Corresponding author; email: rhonira@ukm.edu.my

   

 

 

previous