Sains Malaysiana 49(12)(2020): 3145-3154

http://dx.doi.org/10.17576/jsm-2020-4912-26

 

Electrochemical Reaction and Dissociation of Glycerol on PdAu Surface Catalyst

(Tindak Balas Elektrokimia dan Pemisahan Gliserol pada Permukaan Pemangkin PdAu)

 

NABILA A. KARIM1*, NORILHAMIAH YAHYA2, MUHAMMAD SYAFIQ1 & SITI KARTOM KAMARUDIN1

 

1Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

2Malaysian Institute of Chemical and Bioengineering Technology, Universiti Kuala Lumpur, 78000 Alor Gajah, Melaka, Malaysia

 

Received: 11 August 2020/Accepted: 11 September 2020

 

ABSTRACT

Direct Glycerol Fuel Cell is one of the alternative energy that can produce electricity without burning. The production of electricity without combustion can reduce the use of fossil fuel as well as reduce environmental pollution. A new catalyst of PdAu has been synthesized in this study to increase the activity of the glycerol oxidation reaction. Morphologies analysis was performed on CNF-supported synthesized PdAu. FESEM and TEM image show the PdAu supported on the CNF surface. Both PdAu and CNF has a diameter size of 4-6 nm and 80-130 nm, respectively. In CV analysis, PdAu/CNF has produced an oxidation peak and current density at -0.9 V vs. SCE and 70 mA/cm2, respectively. Each mechanism of glycerol dissociation step during glycerol oxidation, different atomic active sites are required in PdAu. For example, for glycerol adsorption, Au atom as an active site while for *C3H7O3 requires Pd atom and Au atom as the active site. The Au catalyst model shows better adsorption as Au/CNF has a slightly more negative oxidation peak than PdAu. Nevertheless, the Au catalyst showed less durability compared to PdAu.

 

Keywords: Electro-catalyst; electrochemical reaction; glycerol; PdAu; surface reaction

 

ABSTRAK

Sel Bahan Api Gliserol Langsung adalah salah satu tenaga alternatif yang dapat menghasilkan elektrik tanpa proses pembakaran. Pengeluaran elektrik tanpa pembakaran dapat mengurangkan penggunaan bahan bakar fosil serta mengurangkan pencemaran alam sekitar. Mangkin baru PdAu telah disintesis dalam kajian ini untuk meningkatkan aktiviti tindak balas pengoksidaan gliserol. Analisis morfologi dilakukan pada PdAu yang telah disintesis dan disokong oleh CNF. Gambar FESEM dan TEM menunjukkan PdAu disokong pada permukaan CNF. Kedua-dua PdAu dan CNF masing-masing mempunyai ukuran diameter 4-6 nm dan 80-130 nm. Dalam analisis CV, PdAu/CNF telah menghasilkan puncak pengoksidaan dan ketumpatan arus masing-masing pada -0.9 V vs SCE dan 70 mA/cm2. Setiap mekanisme langkah pemisahan gliserol semasa pengoksidaan gliserol, tapak aktif atom yang berbeza diperlukan dalam PdAu. Sebagai contoh, untuk penjerapan gliserol, atom Au sebagai tapak aktif sementara untuk *C3H7O3 memerlukan atom Pd dan atom Au sebagai tapak aktif. Model mangkin Au menunjukkan penjerapan yang lebih baik kerana Au/CNF mempunyai puncak pengoksidaan yang sedikit lebih negatif daripada PdAu. Walaupun begitu, mangkin Au menunjukkan daya tahan yang lebih rendah berbanding dengan PdAu.

 

Kata kunci: Elektro-mangkin; gliserol; permukaan tindak balas; PdAu tindak balas elektrokimia

 

REFERENCES

Abdullah, N., Kamarudin, S.K., Shyuan, L.K. & Karim, N.A. 2017. Fabrication and characterization of new composite TiO2 carbon nanofiber anodic catalyst support for direct methanol fuel cell via electrospinning method.  Nanoscale Research Letters 12(1): 613.

Alias, M.S., Kamarudin, S.K., Zainoodin, A.M. & Masdar, M.S. 2020. Active direct methanol fuel cell: An overview.  International Journal of Hydrogen Energy 45(38): 19620-19641.

Araujo, H.R., Zanata, C.R., Teixeira-Neto, E., de Lima, R.B., Batista, B.C., Giz, M.J. & Camara, G.A. 2019. How the adsorption of Sn on Pt (100) preferentially oriented nanoparticles affects the pathways of glycerol electro-oxidation.  Electrochimica Acta 297: 61-69.

Brueckner, T.M., Wheeler, E., Chen, B., El Sawy, E.N. & Pickup, P.G. 2019. Screening of catalysts for the electrochemical oxidation of organic fuels in a multi-anode proton exchange membrane cell.  Journal of The Electrochemical Society 166(13): F942-F948.

Cui, X., Li, Y., Zhao, M., Xu, Y., Chen, L., Yang, S. & Wang, Y.  2019. Facile growth of ultra-small Pd nanoparticles on zeolite-templated mesocellular graphene foam for enhanced alcohol electro-oxidation.  Nano Research 12(2): 351-356.

Day, C. & Day, G. 2017. Climate change, fossil fuel prices and depletion: The rationale for a falling export tax.  Economic Modelling 63: 153-160.

Gao, F., Zhang, Y., Song, P., Wang, J., Yan, B., Sun, Q., Li, L., Zhu, X. & Du, Y. 2019. Shape-control of one-dimensional PtNi nanostructures as efficient electrocatalysts for alcohol electro-oxidation.  Nanoscale 11(11): 4831-4836.

Ghosh, S., Bysakh, S. & Basu, R.N. 2019. Bimetallic Pd96Fe4 nanodendrites embedded in graphitic carbon nanosheets as highly efficient anode electrocatalysts. Nanoscale Advances 1(10): 3929-3940.

Houache, M.S., Hughes, K., Ahmed, A., Safari, R., Liu, H., Botton, G.A. & Baranova, E.A. 2019. Electrochemical valorization of glycerol on Ni-rich bimetallic NiPd nanoparticles: Insight into product selectivity using in situ polarization modulation infrared-reflection absorption spectroscopy. ACS Sustainable Chemistry & Engineering 7(17): 14425-14434.

Karim, N.A. & Kamarudin, S.K. 2017. Novel heat-treated cobalt phthalocyanine/carbon-tungsten oxide nanowires (CoPc/C-W18O49) cathode catalyst for direct methanol fuel cell.  Journal of Electroanalytical Chemistry 803: 19-29.

Karim, N.A., Kamarudin, S.K. & Loh, K.S. 2017. Performance of a novel non-platinum cathode catalyst for direct methanol fuel cells.  Energy Conversion and Management 145: 293-307.

Martins, C.A., Ibrahim, O.A., Pei, P. & Kjeang, E. 2019. In situ decoration of metallic catalysts in flow-through electrodes: Application of Fe/Pt/C for glycerol oxidation in a microfluidic fuel cell.  Electrochimica Acta 305: 47-55.

Mori, D. & Hirose, K. 2009. Recent challenges of hydrogen storage technologies for fuel cell vehicles. International Journal of Hydrogen Energy 34(10): 4569-4574.

Nascimento, A.P. & Linares, J.J. 2014. Performance of a direct glycerol fuel cell using KOH doped polybenzimidazole as electrolyte. Journal of the Brazilian Chemical Society 25(3): 509-516.

Ning, X., Zhou, X., Luo, J., Ma, L., Xu, X. & Zhan, L. 2019. Glycerol and formic acid electro-oxidation over Pt on S-doped carbon nanotubes: Effect of carbon support and synthesis method on the metal-support interaction. Electrochimica Acta 319: 129-137.

Sun, Q., Gao, F., Zhang, Y., Wang, C., Zhu, X. & Du, Y. 2019. Ultrathin one-dimensional platinum-cobalt nanowires as efficient catalysts for the glycerol oxidation reaction.  Journal of Colloid and Interface Science 556: 441-448.

Tam, B., Duca, M., Wang, A., Fan, M., Garbarino, S. & Guay, D. 2019. Promotion of glycerol oxidation by selective Ru decoration of (100) domains at nanostructured Pt electrodes.  ChemElectroChem 6(6): 1784-1793.

Wang, C., Song, P., Gao, F., Song, T., Zhang, Y., Chen, C., Li, L., Jin, L. & Du, Y. 2019. Precise synthesis of monodisperse PdAg nanoparticles for size-dependent electrocatalytic oxidation reactions.  Journal of Colloid and Interface Science 544: 284-292.

Wang, J., Wang, H. & Fan, Y. 2018. Techno-economic challenges of fuel cell commercialization.  Engineering 4(3): 352-360.

Wang, W., Wang, Z., Wang, J., Zhong, C.J. & Liu, C.J. 2017. Highly active and stable Pt-Pd alloy catalysts synthesized by room-temperature electron reduction for oxygen reduction reaction. Advanced Science 4(4): 1600486.

Yahya, N., Kamarudin, S.K., Karim, N.A., Masdar, M.S. & Loh, K.S. 2017. Enhanced performance of a novel anodic PdAu/VGCNF catalyst for electro-oxidation in a glycerol fuel cell.  Nanoscale Research Letters 12 (1): 605.

Zakaria, K., McKay, M., Thimmappa, R., Hasan, M., Mamlouk, M. & Scott, K. 2019. Direct glycerol fuel cells: Comparison with direct methanol and ethanol fuel cells.  ChemElectroChem 6(9): 2578-2585.

Zhang, Y., Gao, F., Song, P., Wang, J., Song, T., Wang, C., Chen, C., Jin, L., Li, L., Zhu, X. & Du, Y. 2019. Superior liquid fuel oxidation electrocatalysis enabled by novel bimetallic PtNi nanorods. Journal of Power Sources 425: 179-185.

Zhang, Z.C., Lerner, B., Lei, G.D. & Sachtler, W.M.H. 1993. Hydrocarbon-induced agglomeration of Pd particles in Pd/HZSM-5. Journal of Catalysis 140(2): 481-496.

Zhou, Y., Shen, Y., Xi, J. & Luo, X. 2019. Selective electro-oxidation of glycerol to dihydroxyacetone by PtAg skeletons. ACS Applied Materials & Interfaces 11(32): 28953-28959.

 

*Corresponding author; email: nabila.akarim@ukm.edu.my  

   

 

 

previous