Sains Malaysiana 49(1)(2020): 57-67

http://dx.doi.org/10.17576/jsm-2020-4901-07

 

Adsorption of Para Nitro-phenol by Activated Carbon Produced from Alhagi

(Penjerapan Para Nitro-fenol dengan Karbon Aktifan Dihasilkan daripada Alhagi)

 

GHUFRAN MUAFAQ ABD-HADI & SAMI D. SALMAN*

                

Biochemical Engineering Department, Al-Khwarizmi College of Engineering, University of Baghdad, Baghdad 47024, Iraq

 

Received: 19 August 2019/Accepted: 10 October 2019

 

ABSTRACT

This manuscript has present an experimental study for Para Nitro-phenol (PNP) removal from aqueous solution using by physiochemical Alhagi activated carbon (AAC). AAC was characterized using SEM to investigate surface morphology and BET to estimate the specific surface area. The best surface area of AAC was found to be 641.6 m2/gm which was obtained at 600ºC activation temperature and impregnation ratio of 1:1 of KOH. The investigated factors for PNP ions adsorption and their ranges such as initial concentration (10-50 mg/L), adsorption time (30-210 min), temperature (20-50ºC) and solution pH (4-10). Isotherm of adsorption and its kinetics were studied. The adsorption process was modeled statistically by an empirical model. The equilibrium data were fitted to the Langmuir and Freundlich isotherm models and the data found to be well represented by Langmuir isotherm. Pseudo- first order and pseudo- second order kinetic equations were utilized to study adsorption kinetics. It is found that the PNP adsorption on AAC fitted pseudo- second more adequately and the best removal efficiency was found to be 97.59%.

 

Keywords: Adsorption; activated carbon; alhagi; PNP; physiochemical activation

 

Abstrak

Kertas ini telah membentangkan satu kajian uji kaji untuk penyingkiran para Nitro-fenol (PNP) daripada larutan akueus menggunakan karbon aktifan fiziokimia Alhagi (AAC). AAC telah dicirikan dengan menggunakan SEM untuk mengkaji permukaan morfologi dan BET untuk menganggar bahagian permukaan tertentu. Kawasan permukaan terbaik AAC ialah 641.6 m2/gm yang diperoleh pada suhu pengaktifan 600ºC dan nisbah impregnasi 1:1 KOH. Faktor yang dikaji bagi penjerapan ion PNP dan julatnya seperti kepekatan awal (10-50 mg/L), masa penjerapan (30-210 min), suhu (20-50ºC) dan larutan pH (4-10). Isoterma penjerapan dan kinetik telah dikaji. Proses penjerapan ini dimodelkan secara statistik oleh model empirik. Data keseimbangan disuaikan kepada model isoterma Langmuir dan Freundlich dan data ini didapati diwakili dengan baik oleh isoterma Langmuir. Persamaan kinetik tertib pertama pseudo dan tertib kedua pseudo telah digunakan untuk mengkaji penjerapan kinetik. Didapati bahawa penjerapan PNP pada AAC lebih sesuai untuk pseudo kedua dan kecekapan penyingkiran terbaik adalah pada 97.59%.

 

Kata kunci: Alhagi; karbon aktifan; penjerapan; PNP pengaktifan fiziokimia

 

REFERENCES

Abdelkreem, M. 2013. Adsorption of phenol from industrial wastewater using olive mill waste. APCBEE Procedia 5: 349-357. https://doi.org/10.1016/j.apcbee.2013.05.060.

Ahmaruzzaman, M. & Sharma, D.K. 2005. Adsorption of phenols from wastewater. Journal of Colloid and Interface Science 287: 14-24. https://doi.org/10.1016/j.jcis.2005.01.075.

Al-Obaidi, M.A., Jarullah, A.T., Kara-Zaïtri, C. & Mujtaba, I.M. 2018. Simulation of hybrid trickle bed reactor-reverse osmosis process for the removal of phenol from wastewater. Computers and Chemical Engineering Received 113: 264-273.

Álvarez, P.M., García-araya, J.F., Beltrán, F.J., Masa, F.J. & Medina, F. 2005. Ozonation of activated carbons: Effect on the adsorption of selected phenolic compounds from aqueous solutions. Journal of Colloid and Interface Science 283: 503-512. https://doi.org/10.1016/j.jcis.2004.09.014.

Arunima Nayak, Brij Bhushan, Vartika Gupta. & P. Sharma. 2017. Chemically activated carbon from lignocellulosic wastes for heavy metal waste-water remediation: Effect of activation conditions. Journal of Colloid and Interface Science 493: 228-240. https://doi.org/10.1016/j.jcis.2017.01.031.

Ayranci, E.O.D. 2005. Sorption behaviors of some phenolic compounds onto high specific area activated carbon cloth. J. Hazard. Mater. B124: 125-132.

Azry Borhan, Mohd Faisal Taha & Athirah Amer Hamzah 2014. Characterization of activated carbon from wood sawdust prepared via chemical activation using potassium hydroxide. Advanced Materials Research 832: 132-137. https://doi.org/10.4028/www.scientific.net/AMR.832.132.

Bing, H., Sharadwata, P. & Danquah, M.K. 2019. An overview of immobilized enzyme technologies for dye, phaenolic removal from wastewater. Biochemical Pharmacology 7(2): 102961. https://doi.org/10.1016/j.jece.2019.102961.

Bódalo, A., Gómez, E., Hidalgo, A.M., Gómez, M., Murcia, M.D. & López, I. 2009. Nanofiltration membranes to reduce phenol concentration in wastewater. DES 245(1-3): 680-686. https://doi.org/10.1016/j.desal.2009.02.037.

Boehm, H.P. 1994. Some aspects of the surface chemistry of carbon blacks and other carbons. Carbon 32(5): 759-769. https://doi.org/10.1016/0008-6223(94)90031-0.

Brasquet, C.E.S. & Le Cloirec, P. 1999. Removal of phenolic compounds from aqueous solution by activated carbon cloths. Water Science Technology 39: 201-205.

Chandra, T.C., Mirna, M.M., Sudaryanto, Y. & Ismadji, S. 2007. Adsorption of basic dye onto activated carbon prepared from durian shell: Studies of adsorption equilibrium and kinetics. Chemical Engineering Journal 127(1-3): 121-129. https://doi.org/10.1016/j.cej.2006.09.011.

Chern, J.M. & Chien, Y.W. 2002. Adsorption of nitrophenol onto activated carbon: Isotherms and breakthrough curves. Water Research 36: 647-655.

Daifullah, A.A.M. & Girgis, B.S. 1998. Removal of some substituted phenols by activated carbon obtained from agriculture waste. Water Research 32: 1169-1177.

Danish Mohammed, Rokiah Hashim, M.N. Mohamad Ibrahim. & Othman Sulaiman. 2014. Optimized preparation for large surface area activated carbon from date (Phoenix dactylifera L.) stone biomass. Biomass and Bioenergy 61(320): 167-178. https://doi.org/10.1016/j.biombioe.2013.12.008.

Freundlich, H. 1925. Capillary and colloid chemistry. Translated by Hatfield, H.S. J. Phys. Chem. 57: 385-470.

Gowthami, R. & Sharpudin, J. 2016. Removal of phenol from textile wastewater using natural adsorbent. International Journal of Science, Engineering and Technology Research 5(4): 1157-1161.

Ho, Y-S. 2016. Comments on using of "pseudo-first-order model". Journal of Taiwan Institute of Chemical Engineers http://dx.doi.org/10.1016/j.jtice.2016.06.032

Iwagaki, F., Ogando, B., De Aguiar, C.L., Napolitano Viotto, V., José Heredia, F. & Hernanz, D. 2019. Removal of phenolic, turbidity and color in sugarcane juice by electrocoagulation as a sulfur-free process. Food Research International 122: 643-652.

Javier M. Ochando-pulido, Ruben González-Hernández & Antonio Martinez-Ferez. 2017. On the effect of the operating parameters for two-phase olive-oil washing wastewater combined phenolic compounds recovery and reclamation by novel ion exchange resins. Separation and Purification Technology 195: 50-59.

Karunarathne, H.D.S.S. & Amarasinghe, B.M.W.P.K. 2013. Fixed bed adsorption column studies for the removal of aqueous phenol from activated carbon prepared from sugarcane bagasse. Energy Procedia 34: 83-90. https://doi.org/10.1016/j.egypro.2013.06.736.

Kulkarni, S.J., Tapre, R.W., Patil, S.V. & Sawarkar, M.B. 2013. Adsorption of phenol from wastewater in fluidized bed using coconut shell activated carbon. Procedia Engineering 51(2012): 300-307. https://doi.org/10.1016/j.proeng.2013.01.040.

Langmuir, I. 1916. The constitution and fundamental properties of solids and liquids. Journal of the Franklin Institute 183(1): 102-105.

Larous, S. & Meniai, A.H. 2012. The use of sawdust as by product adsorbent of organic pollutant from wastewater: Adsorption of phenol. Energy Procedia 18: 905-914. https://doi.org/10.1016/j.egypro.2012.05.105.

Lee Soo Min, Jeong Hanseob, Lee Jaejung. & Young Min Ju. 2019. Using electro-coagulation treatment to remove phenolic compounds and furan derivatives in hydrolysates resulting from pilot-scale supercritical water hydrolysis of Mongolian oak. Renewable Energy 138: 971-979.

Li Jinlong, Chen Xiangyang, Xu Dongfeng. & Pan Kai. 2019. Ecotoxicology and environmental safety immobilization of horseradish peroxidase on electrospun magnetic nano fibers for phenol removal. Ecotoxicology and Environmental Safety 170: 716-721. https://doi.org/10.1016/j.ecoenv.2018.12.043.

Liu Yi-Hung, Huang Wei-Jin. & Wang Chih-Ta. 2019. Photoelectrocatalytic oxidation of phenol by UV-assisted electrogenerated Ce (IV) in aqueous solution. Journal of the Taiwan Institute of Chemical Engineers 102: 218-224.

Mandal Ashanendu. & Sudip Kumar Das. 2019. Phenol adsorption from wastewater using clarified sludge from basic oxygen furnace. Journal of Environmental Chemical Engineering 7(4): 103259.

Md. Ahmaruzzaman. 2008. Adsorption of phenolic compounds on low-cost adsorbents: A review. Advances in Colloid and Interface Science 143: 48-67. https://doi.org/10.1016/j.cis.2008.07.002.

Massart, L. & Vandeginste, B. 1991. Chemometrics and Qualimetrics in Chemical Engineering. New Jersey: Princeton Press.

Mishra Shubham, Swati Singh, Shalu Rawat. & Jiwan Singh. 2019. Corn husk derived magnetized activated carbon for the removal of phenol and para-nitrophenol from aqueous solution: Interaction mechanism, insights on adsorbent characteristics, and isothermal, kinetic and thermodynamic properties. Journal of Environmental Management 246: 362-373.

Moreno-Castilla, C. 2004. Adsorption of organic molecules from aqueous solutions on carbon materials Q. Carbon 42: 83-94. https://doi.org/10.1016/j.carbon.2003.09.022.

Moreno-piraján, J.C., Gómez-Cruz, R., García-Cuello, V.S. & Giraldo, L. 2010. Binary system Cu(II)/Pb(II) adsorption on activated carbon obtained by pyrolysis of cow bone study. Journal of Analytical and Applied Pyrolysis 89: 122-128. https://doi.org/10.1016/j.jaap.2010.06.007.

Mounir Daoud, Oumessaâd Benturki, Girods, P., Donnot, A. & Fontana, S. 2019. Adsorption ability of activated carbons from Phoenix dactylifera rachis and Ziziphus jujube stones for the removal of commercial dye and the treatment of dyestuff wastewater mounir. Microchemical Journal 148: 493-502.

Muataz Ali Atieh. 2014. Removal of phenol from water different types of carbon - A comparative analysis. Procedia-Social and Behavioral Sciences 10: 136-141. https://doi.org/10.1016/j.apcbee.2014.10.031.

Muftah H. El-Naas, Sulaiman Al-Zuhair. & Manal Abu Alhaija. 2010. Removal of phenol from petroleum refinery wastewater through adsorption on date-pit activated carbon. Chemical Engineering Journal 162(3): 997-1005. https://doi.org/10.1016/j.cej.2010.07.007.

Mujtaba, I.M. 2017. Process: Model development based on experiment and simulation. Journal of Water Process Engineering 18(February): 20-28.

Naghmeh Sadat Mirbagheri & Samad Sabbaghi. 2017. A natural kaolin/γ-Fe2O3 composite as an efficient nano-adsorbent for removal of phenol from aqueous solutions. Microporous and Mesoporous Materials 259: 134-141.

Nouri, S.F.H. 2004. Adsorption of p-nitrophenol in untreated and treated activated carbon: Adsorption 10: 79-86.

Padmaja Sudhakar Pamidimukkala & Harnish Soni. 2018. Efficient removal of organic pollutants with activated carbon derived from palm shell: Spectroscopic characterisation and experimental optimisation Journal of Environmental Chemical Engineering 6(2): 3135-3149.

Ruthven, D.M. & Wiley, J. 1985. Principles of adsorption and adsorption inorganic ion exchange materials. AiChE Journal 31(3): 523-524.

Sridhar, R., Uma Ramanane, U. & Rajasimman, M. 2018. ZnO nanoparticles-synthesis, characterization and its application for phenol removal from synthetic and pharmaceutical industry wastewater. Environmental Nanotechnology, Monitoring & Management 10: 388-393.

Sudaryanto, Y., Hartono, S.B., Irawaty, W., Hindarso, H. & Ismadji, S. 2006. High surface area activated carbon prepared from cassava peel by chemical activation. Bioresource Technology 97: 734-739. https://doi.org/10.1016/j.biortech.2005.04.029.

Tang Dengyong, Zheng Zheng, Lin Kui, Luan Jingfei. & Zhang Jibiao. 2007. Adsorption of p-nitrophenol from aqueous solutions onto activated carbon fiber. Hazardous Materials 143: 49-56. https://doi.org/10.1016/j.jhazmat.2006.08.066.

Tang Wenjing, Huang Huijuan, Gao Yajun, Liu Xiaoyao, Yang Xinyu, Ni Huijun. & Zhang Jianbin. 2015. Preparation of a novel porous adsorption material from coal slag and its adsorption properties of phenol from aqueous solution. JMADE 88: 1191-1200. https://doi.org/10.1016/j.matdes.2015.09.079.

Thue, P.S., Adebayo, M.A., Lima, E.C., Sieliechi, J.M., Machado, F.M., Dotto, G.L., Vaghetti, J.C.P. & Dias, S.L.P. 2016. Preparation, characterization and application of microwave-assisted activated carbons from wood chips for removal of phenol from aqueous solution. Journal of Molecular Liquids 223: 1067-1080. https://doi.org/10.1016/j.molliq.2016.09.032.

Víctor-Ortega, M.D., Ochando-Pulido, J.M. & Martínez-Ferez, A. 2016. Performance and modeling of continuous ion exchange processes for phenols recovery from olive mill wastewater. Process Safety and Environmental Protection 100: 242-251. https://doi.org/10.1016/j.psep.2016.01.017.

Wolborska, A. 1989. Adsorption on activated carbon of p-nitrophenol from aqueous solution. Water Research 23: 85-91.

Xue Guanghai, Gao Manglai, Gu Zheng, Luo Zhongxin. & Hu Zhaochao. 2013. The removal of p-Nitrophenol from aqueous solutions by adsorption using gemini surfactants modified montmorillonites. Chemical Engineering Journal 218: 223-231.

Yang Wenlan, Yu Zhou, Pan Bingcai, Lu, Lv. & Zhang Weiming. 2015. Simultaneous organic/inorganic removal from water using a new nanocomposite adsorbent: A case study of p-Nitrophenol and phosphate. Chemical Engineering Journal 268: 399-407. https://doi.org/10.1016/j.cej.2015.01.051.

Zagklis, D.P., Vavouraki, A.I., Kornaros, M.E. & Paraskeva, C.A. 2015. Purification of olive mill wastewater phenols through membrane filtration and resin adsorption/desorption. Journal of Hazardous Materials 285: 69-76. https://doi.org/10.1016/j.jhazmat.2014.11.038.

Zambrano, J. & Min, B. 2019. Comparison on efficiency of electrochemical phenol oxidation in two different supporting electrolytes (NaCl and Na2SO4) Using Pt/Ti Electrode. Environmental Technology & Innovation 15: 100382.

 

*Corresponding author; email: sami@kecbu.uobaghdad.edu.iq  

 

 

 

 

previous