Sains Malaysiana 49(2)(2020): 305-313

http://dx.doi.org/10.17576/jsm-2020-4902-08

 

Incorporating 1-butyl-3-methylimidazolium Chloride Ionic Liquid into Iota Carrageenan Solid Biopolymer Electrolyte for Electrochemical Devices Application

(Pencampuran Cecair Ionik 1-butil-3-metilimidazolium Klorida ke dalam Elektrolit Biopolimer Pepejal Iota Karagenan bagi Aplikasi Peranti Elektrokimia)

 

NUR AZLINA ABDUL GHANI1, FARAH HANNAN ANUAR1, AZIZAN AHMAD1, NADHRATUN NAIIM MOBARAK1, INTAN JULIANA SHAMSUDIN2, MARIAH ZULIANA DZULKIPLI1 & NUR HASYAREEDA HASSAN1*

 

1Centre for Advance Material and Renewable Resources, Faculty of Science and Technology Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

2Chemistry Department, Centre for Defence Foundation Studies, National Defence University of Malaysia, 57000 Kuala Lumpur, Federal Territory, Malaysia

 

Received: 5 December 2018/Accepted: 27 October 2019

 

ABSTRACT

Solid biopolymer electrolyte based on iota carrageenan and 1-butyl-3-methylimidazolium chloride, [Bmim]Cl were successfully prepared by solution casting technique. Weight percentage (wt. %) of [Bmim]Cl was varied from 0 wt. % to 100 wt. % and the highest ionic conductivity achieved was 2.70 × 10-3 S cm-1 for 70 wt. % [Bmim]Cl at ambient temperature. The interaction between iota carrageenan and [Bmim]Cl was confirmed by the formation of new peak on the ATR-FTIR spectrum. The reduction in crystallinity of iota carrageenan as the inclusion of [Bmim]Cl was observed based on X-ray diffraction (XRD) spectroscopy. FESEM morphology showed the compatibility and homogeneity between iota carrageenan and [Bmim]Cl while the LSV analysis showed that solid biopolymer electrolyte-based iota carrageenan-[Bmim]Cl possess high electrochemical stability up to 3.0 V. The transference number (TN) analysis indicated that ions are the main contributor for the ionic conduction.

 

Keywords: Iota carrageenan; ionic conductivity; ionic liquid; solid polymer electrolyte

 

ABSTRAK

Elektrolit biopolimer pepejal berasaskan iota karagenan dan 1-butil-3-metilimidazolium klorida, [Bmim]Cl berjaya dihasilkan melalui teknik pengacuan larutan. Peratus berat (% bt.) [Bmim]Cl divariasikan daripada 0 % bt.  sehingga 100 % bt. dan kekonduksian ionik tertinggi adalah 2.70 × 10-3 S cm-1 bagi 70 % bt. [Bmim]Cl pada suhu ambien. Interaksi antara iota karagenan dan [Bmim]Cl disahkan dengan pembentukan puncak baru pada spektrum ATR-FTIR. Pengurangan dalam penghabluran karagenan apabila [Bmim]Cl dimasukkan diperhatikan berdasarkan spektroskopi belauan sinar-X (XRD). Morfologi FESEM memperlihatkan keserasian dan kehomogenan antara iota karagenan dengan [Bmim]Cl manakala analisis LSV menunjukkan bahawa elektrolit biopolimer pepejal berasaskan iota karagenan-[Bmim]Cl mempunyai kestabilan elektrokimia yang tinggi sehingga 3.0V. Analisis nombor pemindahan (TN) membuktikan bahawa ion adalah penyumbang utama bagi pengkonduksian ionik.

 

Kata kunci: Cecair ionik; elektrolit biopolimer pepejal; iota karagenan; konduksian ionic

 

REFERENCES

Agrawal, R.C. & Pandey, G.P. 2008. Solid polymer electrolytes: Materials designing and all-solid-state battery applications: An overview. Journal of Physics D: Applied Physics 41(22): 223001.

Anderson, J.L., Armstrong, D.W. & Wei, G.T. 2006. Ionic liquids in analytical chemistry. Analytical Chemistry 78(9): 2892-2902.

Armand, M., Endres, F., MacFarlane, D.R., Ohno, H. & Scrosati, B. 2009. Ionic-liquid materials for the electrochemical challenges of the future. Nature Materials 8(8): 621-629.

Avent, A.G., Chaloner, P.A., Day, M.P., Seddon, K.R. & Welton, T. 1994. Evidence for hydrogen bonding in solutions of 1-ethyl-3-methylimidazolium halides, and its implications for room-temperature halogenoaluminate (III) ionic liquids. Journal of the Chemical Society, Dalton Transactions 23: 3405-3413.

Arof, A.K., Shuhaimi, N.E.A., Alias, N.A., Kufian, M.Z. & Majid, S.R. 2010. Application of chitosan/iota-carrageenan polymer electrolytes in electrical double layer capacitor (EDLC). Journal of Solid State Electrochemistry 14(12): 2145-2152.

Borderías, A.J., Sánchez-Alonso, I. & Pérez-Mateos, M. 2005. New applications of fibres in foods: Addition to fishery products. Trends in Food Science & Technology 16(10): 458-465.

Bešter-Rogač, M., Stoppa, A., Hunger, J., Hefter, G. & Buchner, R. 2011. Association of ionic liquids in solution: A combined dielectric and conductivity study of [bmim][Cl] in water and in acetonitrile. Physical Chemistry Chemical Physics 13(39): 17588-17598.

Campo, V.L., Kawano, D.F., da Silva Jr., D.B. & Carvalho, I. 2009. Carrageenans: Biological properties, chemical modifications and structural analysis-A review. Carbohydrate Polymers 77(2): 167-180.

Cláudio, A.F.M., Swift, L., Hallett, J.P., Welton, T., Coutinho, J.A. & Freire, M.G. 2014. Extended scale for the hydrogen-bond basicity of ionic liquids. Physical Chemistry Chemical Physics 16(14): 6593-6601.

Coggins, C., Blanchard, K., Alvarez, F., Brache, V., Weisberg, E., Kilmarx, P.H., Lacarra, M., Massai, R., Mishell, D., Salvatierra, A. & Witwatwongwana, P. 2000. Preliminary safety and acceptability of a carrageenan gel for possible use as a vaginal microbicide. Sexually Transmitted Infections 76(6): 480-483.

Ghani, N.A.A., Othaman, R., Ahmad, A., Anuar, F.H. & Hassan, N.H. 2018. Impact of purification on iota carrageenan as solid polymer electrolyte. Arabian Journal of Chemistry 12(3): 370-376.

Giridhar, P., Venkatesan, K.A., Srinivasan, T.G. & Rao, P.V. 2007. Electrochemical behavior of uranium (VI) in 1-butyl-3-methylimidazolium chloride and thermal characterization of uranium oxide deposit. Electrochimica Acta 52(9): 3006-3012.

Jumaah, F.N., Mobarak, N.N., Ahmad, A., Ghani, M.A. & Rahman, M.Y. 2015. Derivative of iota-carrageenan as solid polymer electrolyte. Ionics 21(5): 1311-1320.

Jumaah, F.N., Mobaraka, N.N., Ahmad, A. & Ramli, N. 2013. Characterization of ɽ-carrageenan and its derivative based green polymer electrolytes. AIP Conference Proceedings 1571(1): 768-774.

Jayakumar, M., Venkatesan, K.A. & Srinivasan, T.G. 2007. Electrochemical behavior of fission palladium in 1-butyl-3-methylimidazolium chloride. Electrochimica Acta 52(24): 7121-7127.

Liu, Z., Wang, H., Li, Z., Lu, X., Zhang, X., Zhang, S. & Liu Zhou, K. 2011. Characterization of the regenerated cellulose films in ionic liquids and rheological properties of the solutions. Materials Chemistry and Physics 128(1-2): 220-227.

Liew, C.W., Ramesh, S. & Arof, A.K. 2014. A novel approach on ionic liquid-based poly (vinyl alcohol) proton conductive polymer electrolytes for fuel cell applications. International Journal of Hydrogen Energy 39(6): 2917-2928.

Mobarak, N.N., Jumaah, F.N., Ghani, M.A., Abdullah, M.P. & Ahmad, A. 2015. Carboxymethyl carrageenan-based biopolymer electrolytes. Electrochimica Acta 175: 224-231.

Mobarak, N.N., Ramli, N., Ahmad, A. & Rahman, M.Y.A. 2012. Chemical interaction and conductivity of carboxymethyl κ-carrageenan based green polymer electrolyte. Solid State Ionics 224: 51-57.

Moniha, V., Alagar, M., Selvasekarapandian, S., Sundaresan, B. & Boopathi, G. 2018. Conductive bio-polymer electrolyte iota-carrageenan with ammonium nitrate for application in electrochemical devices. Journal of Non-Crystalline Solids 481: 424-434.

Ng, L.S. & Mohamad, A.A. 2006. Protonic battery based on a plasticized chitosan-NH4NO3 solid polymer electrolyte. Journal of Power Sources 163(1): 382-385.

Osman, Z. & Arof, A.K. 2003. FTIR studies of chitosan acetate-based polymer electrolytes. Electrochimica Acta 48(8): 993-999.

Paula, G.A., Benevides, N.M., Cunha, A.P., de Oliveira, A.V., Pinto, A.M., Morais, J.P.S. & Azeredo, H.M. 2015. Development and characterization of edible films from mixtures of κ-carrageenan, ι-carrageenan, and alginate. Food Hydrocolloids 47: 140-145.

Rani, M.S.A., Hassan, N.H., Ahmad, A., Kaddami, H. & Mohamed, N.S. 2016. Investigation of biosourced carboxymethyl cellulose-ionic liquid polymer electrolytes for potential application in electrochemical devices. Ionics 22(10): 1855-1864.

Shamsudin, I.J., Ahmad, A., Hassan, N.H. & Kaddami, H. 2015a. Biopolymer electrolytes based on carboxymethyl ҡ-carrageenan and imidazolium ionic liquid. Ionics 22(6): 841-851.

Shamsudin, I.J., Ahmad, A., Hassan, N.H. & Kaddami, H. 2015b. Bifunctional ionic liquid in conductive biopolymer based on chitosan for electrochemical devices application. Solid State Ionics 278: 11-19.

Shamsudin, I.J., Ahmad, A. & Hassan, N.H. 2014. Green polymer electrolytes based on chitosan and 1-butyl-3-methylimidazolium acetate. AIP Conference Proceedings 1614(1): 393-398.

Sun, P. & Armstrong, D.W. 2010. Ionic liquids in analytical chemistry. Analytica Chimica Acta 661(1): 1-16.

Tanner, K.E., Draper, P.R., Getz, J.J., Burnett, S.W. & Youngblood, E. 2002. RP Scherer Technologies Inc. Film forming compositions comprising modified starches and iota-carrageenan and methods for manufacturing soft capsules using same. U.S. Patent.

Vila, J., Varela, L.M. & Cabeza, O. 2007. Cation and anion sizes influence in the temperature dependence of the electrical conductivity in nine imidazolium based ionic liquids. Electrochimica Acta 52(26): 7413-7417.

Woo, H.J., Majid, S.R. & Arof, A.K. 2011. Conduction and thermal properties of a proton conducting polymer electrolyte based on poly (ε-caprolactone). Solid State Ionics 199: 14-20.

 

*Corresponding author; email: syareeda@ukm.edu.my

 

 

 

previous