Sains Malaysiana 49(3)(2020): 653-660

http://dx.doi.org/10.17576/jsm-2020-4903-20

 

The Effect of Different Concentrations of Calcium Silicate-Maghemite Coating towards Magnetic Behavior and Bioactivity

(Kesan Kepekatan Berbeza Salutan Kalsium Silikat-Magemit kepada Tingkah Laku Magnet dan Aktiviti Bionya)

 

NOR HAZIRAH MOHD AKHIRUDIN, ROSLINDA SHAMSUDIN & NORINSAN KAMIL OTHMAN*

 

School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Received: 10 September 2019/Accepted: 5 December 2019

 

ABSTRACT

In this study, maghemite (γ-Fe2O3) as magnetic nanoparticles (MNPs) material was coated by ceramic materials, calcium silicate (CaSiO3) with different concentrations to suit the medical treatment needed. Different concentration was studied to assess the optimal parameter and ability to maintain post-coated superparamagnetic properties of γ-Fe2O3.  Concentration of CaSiO3 coated on γ-Fe2O3 was prepared with 3 parameters, 97:3, 95:5, and 93:7% w/w, respectively. Magnetic properties of CaSiO3-γ-Fe2O3 were characterized by VSM proceeded with a bioactive study analyzed with FESEM and FTIR after simulated body fluid immersion for 5 days at 37±1ºC. CaSiO3-γ-Fe2O3 with concentration 95:5% w/w exhibit the highest magnetization makes it the most optimum with the average coercivity is 1.6G. FESEM analysis illustrates that the existence of the apatite layer after 5 days of simulated body fluid (SBF) immersion on CaSiO3-γ-Fe2O3 coating sample, which confirmed the bioactive properties. Therefore, CaSiO3-γ-Fe2O3 concentration at ratio 95:5% w/w can be a promising new biomaterial candidate to be applied in the medical field.

 

Keywords: Bioactive; calcium silicate coating; maghemite; superparamagnetic

 

ABSTRAK

Dalam kajian ini, magemit (γ-Fe2O3) sebagai bahan nanozarah magnetik (MNPs) disalut oleh bahan seramik iaitu kalsium silikat (CaSiO3) dengan kepekatan yang berbeza untuk memenuhi keperluan rawatan perubatan. Kepekatan yang berbeza dikaji untuk menentukan parameter yang ideal dan keupayaan untuk mengekalkan sifat superparamagnetik yang dimiliki oleh γ-Fe2O3 selepas proses salutan. Kepekatan CaSiO3 menyalut kepada γ-Fe2O3 disediakan dengan 3 parameter yang berbeza, 97:3% w/w, 95:5% w/w dan 93:7% w/w. Sifat magnetik CaSiO3-γ-Fe2O3 dicirikan oleh VSM kemudiannya diteruskan dengan kajian sifat bioaktif yang dianalisis menggunakan FESEM dan FTIR selepas direndamkan ke dalam larutan simulasi badan (SBF) selama hari pada 37 ± 1ºC. CaSiO3-γ-Fe2O3 dengan kepekatan 95:5% w/w menunjukkan nilai magnetisasi tertinggi menjadikannya parameter paling optimum dengan purata koersiviti ialah 1.6G. Analisis FESEM menunjukkan kehadiran lapisan apatit selepas 5 hari rendaman SBF pada sampel CaSiO3-γ-Fe2O3 mengesahkan sifat bioaktif yang dimiliki. Oleh itu, kepekatan CaSiO3-γ-Fe2O3 pada nisbah 95:5% w/w mempunyai potensi untuk dijadikan calon biobahan yang baru untuk diaplikasikan dalam bidang perubatan.

 

Kata kunci: Bioaktif; magemit; salutan kalsium silikat; superparamagnetik

 

REFERENCES

Abdul Azam, F.A., Ismail, H., Shamsudin, R., Ng, M.H. & Abdul Hamid, M.A. 2018. Pengaruh suhu sinteran terhadap kebioaktifan wolastonit daripada abu sekam padi dan batu kapur. Sains Malaysiana 47(4): 819-827.

Ali, A., Zafar, H., Zia, M., Ul Haq, I., Phull, A.R., Ali, J.S. & Hussain, A. 2016. Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnology, Science and Applications 9: 49-67.

Allaker, R.P. & Yuan, Z. 2019. Nanoparticles and the control of oral biofilms. Nanobiomaterials in Clinical Dentistry 2019: 243-275.

Buga, C., Hunyadi, M., Gacsi, Z., Hegedus, C., Hakl, J., Schmidt, U., Ding, S.J. & Csik, A. 2019. Calcium silicate layer on titanium fabricated by electrospray deposition. Materials Science & Engineering 98: 401-408.

Burinaru, T.A., Volmer, M., Avram, M., Tucureanu, V., Avram, A., Tincu, B., Marculescu, C., Matei, A. Marinescu, R. & Militaru, M. 2019. Antibody functionalized magnetic nanoparticles for circulating tumor cells detection and capture using magnetophoresis. IOP Conference Series: Materials Science and Engineering 485(1): 1-6.

Catalano, E., Miola, M., Ferraris, S., Novak, S., Oltolina, F., Cochis, A., Prat, M., Verne, E., Rimondini, L. & Follenzi, A. 2017. Magnetite and silica-coated magnetite nanoparticles are highly biocompatible on endothelial cells in vitro. Biomedical Physics & Engineering Express 3(2): 025015.

Damas, J.O., Moscardini, S.B., Oliveira, L.R., Silva, R.R.D., Nassar, E.J., Faria, E.H.D., Ciuffi, K.J., Ribeiro, S.J.L. & Rocha, L.A. 2019. Effect of silica coating on the catalytic activity of maghemite nanoparticles impregnated into mesoporous silica matrix. Materials Chemistry and Physics 225: 145-152.

Dulińska-Litewka, J., Łazarczyk, A., Hałubiec, P., Szafranski, O., Karnas, K. & Karewicz, A. 2019. Superparamagnetic iron oxide nanoparticles-Current and prospective medical applications. Materials 12(4): 1-26.

Giannoulatou, V., Theodorou, G.S., Zorba, T., Kontonasaki, E., Papadopoulou, L., Kantiranis, N., Chrissafis, K., Zachariadis, G. & Paraskevopoulou, K.M. 2018. Magnesium calcium silicate bioactive glass doped with copper ions: Synthesis and in vitro bioactivity characterization. Journal of Non-Crystalline Solids 500: 98-109.

Gopal, S.V. & Joe, I.H. 2017. Bioactivity of superparamagnetic maghemite nanorods capped with dl-alanine. Journal of Molecular Liquids 234: 382-390.

Guerrini, L., Alvarez-Puebla, R.A. & Pazos-Perez, N. 2018. Surface modifications of nanoparticles for stability in biological fluids. Journal of Materials 11(7): 1-28.

Ismail, H., Shamsudin, R. & Abdul Hamid, M.A. 2016. Effect of autoclaving and sintering on the formation of β-wollastonite. Materials Science and Engineering 58: 1077-1081.

Khodabakhshi, M. & Bahari, A. 2017. Investigation and characterization of maghemite (γ-Fe2O3) nanoparticles and its cytotoxicity studies. Indian Journal of Pharmaceutical Education and Research 51: 295-301.

Kokubo, T. 1991. Bioactive glass ceramic: Properties and applications. Biomaterials 12: 155-163.

Laurent, S., Forge, D., Port, M., Roch, A., Robic, C., Elst, L.V. & Muller, R.N. 2008. Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterization and biological application. Chem. Rev. 108: 2064-2110.

Lee, Y.L., Wang, W.H., Lin, F.H. & Lin, C.P. 2017. Hydration behaviors of calcium silicate-based biomaterials. Journal of the Formosan Medical Association 116(6): 424-431.

Li, K., Yu, J., Xie, Y., You, M., Huang, L. & Zheng, X. 2016. The effects of cerium oxide incorporation in calcium silicate coating on bone mesenchymal stem cell and macrophage responses. Biol. Trace Elem. Res. 174(1): 198-207.

Liu, X., Morra, M., Carpi, A. & Li, B. 2008. Bioactive calcium silicate ceramics and coatings. Biomedicine & Pharmacotheraphy 62: 526-529.

Matos, J.C., Goncalves, M.C., Pereira, L.C.J., Vieira, B.J. & Waerenborgh, J.C. SPIONs prepared in air through improved synthesis methodology: The influence of γ-Fe2O3/Fe3O4 ration and coating composition on magnetic properties. Nanomaterial 9(7): 943.

Menon, P.K., Sharma, A., Lafuente, J.V., Muresanu, D.F., Aguilar, Z.P., Wang, A., Patnaik, R., Mossler, H. & Sharma, H.S. 2017. Intravenous administration of functionalized magnetic iron oxide nanoparticles does not induce CNS injury in the rat: Influence of spinal cord trauma and cerebrolysin treatment. International Review of Neurobiology 137: 47-63.

Nazari, M., Ghasemi, N. & Maddah, H. 2014. Synthesis and characterization of maghemite nanopwders by chemical precipitation method. J. Nanosruct. Chem. 4: 99.

Ngadiman, N.H.A., Idris, A., Muhammad, I., Kurniawan, D., Yusof, N.M. & Nasiri, R. 2015.  γ-Fe2O3 nanoparticles filled polyvinyl alcohol as potential biomaterial for tissue engineering scaffold. Journal of the Mechanical Behaviour of Biomedical Materials 49: 90-104.

Nurdin, I., Johan, M., Yaacob, I., Ang, B. & Andriyana, A. 2014. Synthesis, characterisation and stability of superparamagnetic maghemite nanoparticle suspension. Mater. Res. Innov. 18: 200-203.

Ohtsuki, C., Kushitani, H., Kokubo, T., Kotani, S. & Yamamuro, T. 1991. Apatite formation on the surface of Ceravital-type glass-ceramic in the body. J. Biomed. Mater. Res. 25: 1363-1670.

Rabel, M., Warncke, P., Gruttner, C., Bergemann, C., Kurland, H.D., Muller, R., Dugandzi, V., Thamm, J., Muller, F.A., Popp, J., Cialla-May, D. & Fischer, D. 2019. Simulation of the long-term fate of superparamagnetic iron oxide-based nanoparticles using simulated biological fluids. Nanomedicine 14(13): 1681-1706.

Shokrollahi, H. 2017. A review of the magnetic properties, synthesis methods and applications of maghemite. Journal of Magnetism and Magnetic Materials 426: 74-81.

Silva, A.K.A., Espinosa, A., Kolosnjaj-Tabi, J., Wilhelm, C. & Gazeau, F. 2016. Medical applications of iron oxide nanoparticles. In Iron Oxides: From Nature to Applications, edited by Faivre, D. New York: John Wiley & Sons, Inc.pp. 423-471.

Sun, S.N., Wei, C., Zhu, Z.Z., Huo, Y.L., Subbu, S.V. & Chuan, X.Z. 2014. Magnetic iron oxide nanoparticles: Synthesis and surface coating techniques for biomedical applications. Chinese Physical Society 23(3): 037503.

Syed Nuzul, F.S.A., Shamsudin, R. & Firuz, Z. 2016. Synthesis of 60 (wt.) % CaO sol-gel derived glass-ceramic and in vitro bioactivity assestment in SBF solution. Key Engineering Materials 673: 161-170.

Wu, W., Xiou, X.H., Zhang, S.F., Peng, T.C., Zhou, J., Ren, F. & Jiang, C.Z. 2010. Synthesis and magnetic properties of maghemite (γ-Fe2O3) short nanotubes. Nanoscale Research Letters 5(9): 1474-1479.

Xie, Y., Li, H., Zhang, C., Gu, X., Zheng, X. & Huang, L. 2014. Graphene-reinforced calcium silicate coatings for load-bearing implants. Biomedical Materials 9(2): 1-7.

Yu, J., Xu, L., Li, K., Xie, N., Xi, Y, Wang, Y., Zheng, X., Chen, X., Wang, M. & Ye, X. 2017. Zinc-modified calcium silicate coatings promote osteogenic differentiation through TGF- β/Smad pathway and osseointegration in osteopenic rabbits. Scientific Reports 7(1): 1-13.

Zamarron, D.R., Hernandez, D.A.C. & Aragon, L.B. 2009. Mechanical properties and apatite forming ability of PMMA bone cements. Materials and Design 30: 3318-3324.

Zhu, Y.J., Guo, X.X. & Sham, T.K. 2016. Calcium silicate-based drug delivery systems. Expert Opinion on Drug Delivery 14(2): 215-228.

 

*Corresponding author; email: insan@ukm.edu.my

 

 

 

 

 

previous