Sains Malaysiana 49(3)(2020): 671-682

http://dx.doi.org/10.17576/jsm-2020-4903-22

 

Influence of Environmental Parameters on Microbiologically Influenced Corrosion Subject to Different Bacteria Strains

(Pengaruh Parameter Persekitaran ke atas Subjek Kakisan Pengaruh Mikrob kepada Strain Bakteria Berbeza)

 

MUHAMMAD KHAIROOL FAHMY MOHD ALI1, MARDHIAH ISMAIL1, AKRIMA ABU BAKAR1, NORHAZILAN MD. NOOR1,2, NORDIN YAHAYA1, LIBRIATI ZARDASTI1* & ABDUL RAHMAN MD. SAM1,2

 

1School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor Darul Takzim, Malaysia

 

2Construction Research Centre, School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor Darul Takzim, Malaysia

 

Received: 20 June 2019/Accepted: 4 December 2019

 

Abstract

Microbiologically influenced corrosion (MIC) is capable on weakening the metal’s strength, eventually leads to pipeline leakage, environmental hazard and financial loss. Sulfate reducing bacteria (SRB) is the principal causative organism responsible for external corrosion on steel structures. To date, considerable works have been conducted in Malaysia on the mechanisms of SRB upon MIC on the marine environment instead of underground. Moreover, commercial bacteria strain represents local strain in terms of performance and behavior upon corrosion of steel structure is yet to be proven. Thus, this paper aims to investigate the influence of environmental parameters towards MIC in corroding pipeline. Two types of SRB strain were used designated as SRB ATCC 7757 (commercial) and SRB Sg. Ular (local strain) isolated from Malaysian soil. The behavior of both strains was critically compared by calculating the rate of corrosion upon carbon steel coupons in stipulated environmental parameters. Four influential parameters i.e. pH, temperature, salinity concentration and iron concentration were considered. Collected data presented and analyzed using graphical and statistical analysis, respectively. The results showed the difference of corrosivity between two SRB strains in terms of corrosion behavior upon the X-70 steel coupon. SRB Sg. Ular able to cause severe effects upon steel structure as compared to SRB ATCC 7757 due to its aggressiveness shown by the recorded metal loss data. Thus, future works related to MIC for local environment in particular, should not compromise with the type of SRB strains considered due to differences of performance of the microorganisms onto tested environment and materials.

 

Keywords: Environmental parameter; microbiologically influenced corrosion (MIC); pipeline; sulfate-reducing bacteria (SRB)

 

Abstrak

Kakisan Pengaruh Mikrob (MIC) akan melemahkan kekuatan logam, mengakibatkan kebocoran saluran paip, ancaman terhadap alam sekitar dan kerugian wang ringgit. Bakteria penurunan sulfat (SRB) merupakan organisma utama yang bertanggung jawab mengakibatkan kakisan luar terhadap struktur keluli. Di Malaysia khususnya, banyak kajian berkaitan mekanisma SRB terhadap MIC dalam persekitaran marin telah dijalankan, berbanding persekitaran bawah tanah. Kebanyakan kajian terdahulu menggunakan strain komersial untuk mengkaji mekanisma SRB kerana ia mudah didapati berbanding strain tempatan. Bagaimanapun, tiada kenyataan khusus yang bersetuju bahawa strain komersial secara praktiknya mampu mewakili strain tempatan sepenuhnya daripada segi penilaian prestasi dan perilaku. Dengan itu, kajian ini dijalankan bertujuan untuk mengkaji kesan SRB strain yang berbeza terhadap kadar kakisan logam. Kajian ini menggunakan dua jenis strain SRB iaitu strain komersial ATCC 7757 dan strain SRB tempatan yang diambil dari Sungai Ular. Empat parameter persekitaran diambil kira dalam uji kaji ini iaitu pH, suhu, tahap kemasinan dan kepekatan iron. Data yang dikumpulkan telah dibentangkan dan dianalisis dengan menggunakan analisis grafik dan statistik. Keputusan kajian semasa menunjukkan perbezaan yang amat ketara antara kedua-dua strain SRB daripada segi tahap kakisan terhadap kupon keluli X-70. SRB Sg. Ular merupakan strain yang agresif dan ia berupaya mengakibatkan kesan yang lebih teruk terhadap struktur keluli berbanding SRB ATCC 7757, ini dapat dibuktikan dengan jelas melalui data kehilangan logam yang direkodkan. Justeru, bagi mendapatkan ramalan kakisan yang tepat pada masa hadapan, kerja-kerja yang berkaitan MIC khususnya tidak dipandang remeh, terutama berkaitan pemilihan organisma yang ingin digunakan.

 

Kata kunci: Bakteria penurunan sulfat (SRB); kakisan pengaruh mikrob (MIC); parameter persekitaran; saluran paip

 

REFERENCES

Abdullah, A. 2016. External Corrosion Growth for Buried Steel Pipeline in Environment Containing Sulfate Reducing Bacteria. Universiti Teknologi Malaysia (Unpublished).

Abdullah, A., Yahaya, N., Noor, N.M. & Rasol, R.M. 2014. Microbial corrosion of API 5l X-70 carbon steel by ATCC 7757 and consortium of sulfate-reducing bacteria. Journal of Chemistry 2014: 130345.

Ali, M.K.F.M., Bakar, A.A., Noor, N.M., Yahaya, N., Ismail, M. & Rashid, A.S. 2017. Hybrid soliwave technique for mitigating sulfate-reducing bacteria in controlling biocorrosion: A case study on crude oil sample. Environmental Technology 38(19): 2427-2439.

Ali, M.K.F.M., Yahaya, N., Bakar, A.A., Ismail, M., Zardasti, L. & Noor, N.M. 2016. Corrosion of X-70 carbon steel pipeline subject to sulfate reducing bacteria. ARPN Journal of Engineering and Applied Sciences 11(21): 12643-12652.

Agostini, R.A. & Young, R.D. 1996. A case history: Investigations of microbially influenced corrosion in a West Texas water flood microbiologically induced corrosion of oil and gas production system. NACE International Publications 1996: 122-127.

Al-Abbas, F.M., Williamson, C., Bhola, S.M., Spear, J.R., Olson, D.L., Mishra, B. & Kakpovbia, A.E. 2013. Influence of sulfate reducing bacterial biofilm on corrosion behavior of low-alloy, high-strength steel (API-5L X80). Journal of International Biodeterioration & Biodegradation 78: 34-42.

Al-Jaroudi, S., Ul-Hamid, A. & Al-Gahtani, M. 2011. Failure of crude oil pipeline due to microbiologically induced corrosion. Corrosion Engineering, Science Technology 46(4): 568-579.

Allison, P.W., Sahar, R.N.R.R., Guan, O.H., Hain, T.S., Vance, I. & Thompson, M.J. 2008. The investigation of microbial activity in an offshore oil production pipeline system and the development of strategies to manage the potential for microbially influenced corrosion. Paper No. 08651. NACE International: Corrosion 2008 Conference and Expo. pp. 1-17.

Angell, P. & Urbanic, K. 2000. Sulfate reducing bacterial activity as a parameter to predict localized corrosion of stainless alloy. Corrosion Science 42: 897-912.

ASTM G1-03. 2011. Standard Practice for Preparing, Cleaning, and Evaluating
Corrosion Test Specimens
. ASTM International. Pennsylvania: American Society for Testing and Materials.

ASTM G1-90. 1999. Standard Practice for Preparing, Cleaning, and Evaluating Corrosion Test Specimens. ASTM International, Pennsylvania: American Society for Testing and Materials.

ASTM G1-72. 1993. Standard Recommended Practice for Preparing, Cleaning and Evaluating Corrosion Test Specimens. Annual Book of ASTM standards. Philadelphia: American Society for Testing and Materials.

Bakar, A.A., Noor, N.M., Yahaya, N., Rasol, R.M. & Ali, M.K.F.M. 2013. The effect of Desulfovibrio vulgaris on the anaerobic corrosion of carbon steel in marine environment. 12th International UMT Annual Symposium (UMTAS2013). pp. 1-7.

Beech, I., Bergel, A., Mollica, A., Flemming, H.C., Scotto, V. & Sand, W. 2000. Microbiologically influenced corrosion of industrial materials. Brite-Euram III Thematic Network ERB BRRT-CT98-5084 (Unpublished).

Booth, G.H. & Tiller, A.K. 1968. Cathodic characteristic of mild steel in suspension of sulfate-reducing bacteria. Corrosion Science 8: 583-600.

Cao, J., Zhang, G., Mao, Z., Fang, Z. & Yang, C. 2009. Precipitation of valuable metals from bioleaching solution by biogenic sulphides. Mineral Engineering 22: 289-295.

Evan, E., Chart, A. & Skedgell, A.N. 1973. The coloured film on stainless steel. Transactions of the Institute of Metal Finishing 51: 108-112.

Fatah, M.C., Ismail, M.C. & Wahjoedi, B.A. 2013. Effects of sulphide ion on corrosion behaviour of X52 steel in simulated solution containing metabolic products species: A study pertaining to microbiologically influenced corrosion. Corrosion Engineering Science and Technology 48(3): 211-220.

Fonseca, I.T.E., Feio, E., Lino, M.J., Reis, M.A. & Rainha, V.L. 1997. The influence of the media on the corrosion of mild steel by Desulfovibrio desulfuricans bacteria: An electrochemical study. Eletrochemica Acta 43: 213-222.

Ismail, M., Noor, N.M., Yahaya, N., Bakar, A.A., Ali, M.K.F. & Abdullah, A. 2015. Statistical investigation on anaerobic sulphate-reducing bacteria growth by turbidity method. International Journal of Biological Chemistry 9(4): 178-187.

Ismail, M., Yahaya, N., Bakar, A.A. & Noor, N.M. 2014. Cultivation of sulphate reducing bacteria in different media. Malaysian Journal of Civil Engineering 26(3): 456-465.

Jacobson, G.A. 2007. Corrosion at Prudhoe Bay: A lesson on the line. Material Performance 46: 27-34.

Javaherdashti, R. 2008. Microbiologically Influenced Corrosion: An Engineering Insight. London: Springer.

Kakooei, S., Ismail, M.C. & Ariwahjoedi, B. 2012. Mechanisms of microbiologically influenced corrosion: A review. World Applied Sciences Journal 17(4): 524-531.

King, R.A. & Miller, J.D.A. 1971. Corrosion by the sulphate-reducing bacteria. Nature 233: 491-492.

Kirchman, D.L., Malmstrom, R.R. & Cottrell, M.T. 2005. Control of bacterial growth by temperature and organic matter in the Western Arctic. Deep Sea Research Part II: Topical Studies in Oceanography 52(24-26): 3386-3395.

Li, Y., Xu, D., Chen, C., Li, X., Jia, R., Zhang, D., Sand, W., Wang, F. & Gu, T. 2018. Anaerobic microbiologically influenced corrosion mechanisms interpreted using bioenergetics and bioelectrochemistry: A review. Journal of Materials Science and Technology 34: 1713-1718.

Lv, L., Zhou, L., Wang, L.Y., Liu, J.F., Gu, J.D., Mu, B.Z. & Yang, S.Z. 2016. Selective inhibition of methanogenesis by sulfate in enrichment culture with production water from low-temperature oil reservoir. International Biodeterioration & Biodegradation 108: 133-141.

Mataqi, K.Y. & Akbar, B.H. 2013. Sulphur cycle of microbial corrosion on carbon steel in soil model. International Journal of Engineering Research and Applications 3(2): 617-623.

Othman, S.R. 2015. Modelling of external corrosion growth of steel pipeline in soil for tropical climate. PhD Thesis. Universiti Teknologi Malaysia (Unpublished).

Rabus, R., Hansen, T.A. & Widdel, F. 2006. Dissimilatory sulfate- and sulfur reducing prokaryotes. In The Prokaryotes, edited by Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.H. & Stackebrandt, E. 3rd ed. Volume 2. Singapore: Springer Science.

Sahrani, F.K., Zaharah, I., Adibah, Y. & Madzlan, A. 2008. Isolation and identification of marine sulpahte-reducing bacteria, Desulfovibrio sp. and Citrobacter Freundii from Pasir Gudang, Malaysia. Sains Malaysiana 37(4): 365-371.

Santegoeds, C.M., Ferdelman, T.G., Muyzer, G. & Beer, D.D. 1998. Structural and functional dynamics of sulfate-reducing populations in bacterial biofilms. Applied and Environmental Microbiology 64(10): 3731-3739.

Strickland, L., Fortnum, R. & Bose, B.D. 1996. A case history of microbiologically influenced corrosion in the Lost Hills Oilfield, Kern County, California. Paper No. 297: The NACE International Annual Conference and Exposition. pp. 1-20.

Stott, J.F.D. 2003. Evaluating microbiologically influenced corrosion. In Corrosion Fundamentals, Testing and Protection. ASM Handbook, USA: ASM International, 13A. pp. 644-649.

Sukla, L.B. & Misra, V.N. 2002. Mineral Biotechnology. Solar Energy Society of India (SESI). p. 30.

Truong, V.K., Lapovok, R., Estrin, Y.S., Rundell, S. & Wang, J.Y. 2010. The influence of nano-scale surface roughness on bacterial adhesion to ultrafine-grained titanium. Biomaterials 31: 3674-3683.

Varjani, S.J. & Upasani, V.N. 2017. Crude oil degradation by Pseudomonas aeruginosa NCIM 5514: Influence of process parameters. Indian Journal of Experimental Biology 55: 493-497.

Videla, H.A. & Herrera, L.K. 2005. Microbiologically influenced corrosion: Looking to the future. International Microbiology 8(3): 169-180.

Wang, G., Spencer, J. & Elsayed, T. 2003. Estimation of corrosion rates of structural members in oil tankers. Proceeding of OMAE 2003. 22nd International Conference on Offshore Mechanics and Arctic Engineering. pp. 1-6.

White, C. & Gadd, G.M. 1996. Mixed sulphate-reducing bacterial cultures for bioprecipitation of toxic metals: Factorial and response-surface analysis of the effects of dilution rate, sulphate and substrate concentration. Microbiology 142: 2197-2205.

Xu, J., Wang, K., Sun, C., Wang, F., Li, X., Yang, J. & Yu, C. 2011. The effect of sulfate reducing bacteria on corrosion of carbon steel Q235 under stimulated disbonded coating by using electrochemical impedance spectroscopy. Corrosion Science 53: 1554-1562.

Xu, D. & Gu, T. 2011. Bioenergetics explains when and why more severe MIC pitting by SRB can occur. In NACE International: Corrosion 2011 Conference & Expo. pp. 1-21.

Zhang, C., Wen, F. & Cao, Y. 2011. Progress in research of corrosion and protection by sulfate reducing bacteria. Procedia Environmental Science 10: 1177-1182.

 

*Corresponding author; email: libriati@utm.my

 

 

 

 

 

previous