Sains Malaysiana 49(5)(2020): 979-988

http://dx.doi.org/10.17576/jsm-2020-4905-02    

Simple and Sensitive Electrokinetic Supercharging in Capillary Electrophoresis for Online Preconcentration and Separation of Secbumeton in Water Samples

  (Superpengesan Elektrokinetik Ringkas dan Sensitif dalam Elektroforesis Rerambut Prapemerkatan secara Terus dan Permisahan Sekbumeton dalam Sampel Air)

  RASMEY SOEUNG1,2, NADHIRATUL-FARIHIN SEMAIL1, WAN ADNAN WAN OMAR1, NUR NADHIRAH MOHAMAD ZAIN1, MAZIDATULAKMAM MISKAM3, YONG FOO WONG3, AEMI SYAZWANI ABDUL KEYON4, MUGGUNDHA RAOOV RAMACHANDRAN5, SAZLINDA KAMARUZAMAN6,7 & NOORFATIMAH YAHAYA1*

  1Integrative Medicine Cluster, Advanced Medical and Dental Institute (AMDI), Universiti Sains Malaysia, 13200 Bertam Kepala Batas, Penang, Malaysia

  2Royal University of Agriculture, 12400 Dangkor District, Phnom Penh, Cambodia

  3School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden Penang, Malaysia

4Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor Darul Takzim, Malaysia

5Department of Chemistry, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Federal Territory, Malaysia  

6Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia  

7Centre for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor Darul Takzim, Malaysia

  Received: 26 January 2019/Accepted: 19 January 2020  

ABSTRACT

This study describes an electrokinetic supercharging for online preconcentration capillary electrophoresis (CE) technique of secbumeton in water samples. Important CE separation and preconcentration conditions, such as concentration and pH of the background electrolyte, applied voltage and ultraviolet wavelength, type and injection time of the terminating electrolyte, and injection time of the leading electrolyte and sample were investigated and optimized. The optimum conditions involved hydrodynamic injection of leading electrolyte (100 mM sodium chloride, 30 s, 50 mbar), electrokinetic injection of the sample as high as 250 s (at +7 kV voltage), and hydrodynamic injection of terminating electrolyte (100 mM Tris buffer, 40 s, 50 mbar). This strategy enhanced secbumeton detection sensitivity up to 3847-fold and 2267-fold when compared with hydrodynamic and electrokinetic injection, respectively, providing a limit of detection as low as 0.03 µg L–1 with good repeatability (relative standard deviation < 4%, n = 5). Wide linear range (0.1–500 µg L–1) with good linearity (R2 = 0.9997) was obtained. The limit of detection was adequate for the analysis of secbumeton in water samples with concentrations lower than its maximum residual limit (0.1 µg L–1). The developed method was applied to environmental water samples, and recoveries were between 85.7 and 105.6%.

Keywords: Capillary electrophoresis; electrokinetic supercharging; environmental water samples; online preconcentration; secbumeton  

ABSTRAK

Kajian ini menerangkan suatu superpengecasan elektrokinetik bagi prapemekatan secara terus teknik elektroforesis rerambut (CE) bagi sekbumeton di dalam sampel air. Pemisahan CE dan keadaan prapemekatan yang penting seperti kepekatan dan pH bagi latar belakang elektrolit, voltan gunaan dan panjang gelombang ultraviolet, jenis dan masa suntikan bagi elektrolit penamat dan masa suntikan bagi elektrolit pemula dan sampel telah dikaji dan dioptimumkan. Keadaan optimum termasuklah suntikan hidrodinamik bagi elektrolit pemula (100 mM natrium klorida, 30 s, 50 mbar), suntikan elektrokinetik bagi sampel setinggi 250 s (pada +7 kV voltan) dan suntikan hidrodinamik bagi elektrolit penamat (100 mM larutan penimbal TRIS, 40 s, 50 mbar). Strategi ini meningkatkan kepekaan penentuan sekbumeton sehingga 3847-gandaan dan 2267-gandaan apabila dibandingkan dengan masing-masing, suntikan hidrodinamik dan elektrokinetik, dengan memberi had pengesanan serendah 0.03 µg L–1 dengan kebolehulangan yang baik (sisihan piawai relatif < 4 %, n = 5). Julat linear yang besar (0.1–500 µg L–1) dengan kelinearan yang baik (R2 = 0.9997) telah diperoleh. Had pengesanan ini adalah mencukupi bagi menganalisa sekbumeton di dalam sampel air dengan kepekatan yang lebih rendah daripada had surih maksimum (0.1 µg L–1). Kaedah yang telah dibangunkan telah digunakan bagi sampel air sekitaran dan pengembalian adalah antara 85.7 dan 105.6%.

Kata kunci: Elektroforesis rerambut; prapemekatan secara terus; sampel air sekitaran; sekbumeton; superpengecasan elektrokinetik  

REFERENCES

Abdul Karim, N.’I., Wan Ibrahim, W.A., Sanagi, M.M. & Abdul Keyon, A.S. 2016. Online preconcentration by electrokinetic supercharging for separation of endocrine disrupting chemical and phenolic pollutants in water samples. Electrophoresis 37(20): 2649-2656.

Acedo-Valenzuela, M.I., Galeano-Díaz, T., Mora-Díez, N. & Silva-Rodríguez, A. 2004. Determination of neutral and cationic herbicides in water by micellar electrokinetic capillary chromatography. Analytica Chimica Acta 519(1): 65-71.

Altria, K.D. 1996. Chapter 1. Fundamentals of capillary electrophoresis theory. In Capillary Electrophoresis Guidebook. Volume 52. Springer. pp. 3-13.

Alvarsson, A. 2012. Assessing the environmental impact of pesticides: Effects of photosystem ii inhibiting herbicides on primary production and ecosystems. Degree Project for Master of Science in Ecotoxicology 30 ECTS. Department of Biology and Environmental Sciences, University of Gothenburg, Sweden pp. 1-58. (Unpublished).

Arribas, A.S., Moreno, M., Bermejo, E., Zapardiel, A. & Chicharro, M. 2011. CZE separation of amitrol and triazine herbicides in environmental water samples with acid-assisted on-column preconcentration. Electrophoresis 32(2): 275-283.

Botello, I., Borrull, F., Calull, M. & Aguilar, C. 2013. Electrokinetic supercharging in CE for the separation and preconcentration of barbiturate drugs in urine samples. Journal of Separation Science 36(3): 524-531.

Cazes, J. 2010. Encyclopedia of chromatography. Crop Science 2(6): 1419.

Dawod, M., Breadmore, M.C., Guijt, R.M. & Haddad, P.R. 2008. Electrokinetic supercharging for on-line preconcentration of seven non-steroidal anti-inflammatory drugs in water samples. Journal of Chromatography A 1189(1-2): 278-284.

Dawod, M., Breadmore, M.C., Guijt, R.M. & Haddad, P.R. 2009. Counter-flow electrokinetic supercharging for the determination of non-steroidal anti-inflammatory drugs in water samples. Journal of Chromatography A 1216(15): 3380-3386.

Gao, Y., Zhou, Q., Xie, G. & Yao, Z. 2012. Temperature-controlled ionic liquid dispersive liquid-phase microextraction combined with HPLC with ultraviolet detector for the determination of fungicides. Journal of Separation Science 35(24): 3569-3574.

Grossman, P.D. 1992. Factors affecting the performance of capillary elecrophoresis separations: Joule heating, electroosmosis, and zone dispersion. In Capillary Electrophoresis: Theory and Practice, edited by Grossman, P.D. & Colburn, J.C. Massachusetts: Academic Press. p. 352.

Hirokawa, T., Okamoto, H. & Gaš, B. 2003. High-sensitive capillary zone electrophoresis analysis by electrokinetic injection with transient isotachophoretic preconcentration: Electrokinetic supercharging. Electrophoresis 24(3): 498-504.

Jablonowski, N.D., Schäffer, A. & Burauel, P. 2011. Still present after all these years: Persistence plus potential toxicity raise questions about the use of atrazine. Environmental Science and Pollution Research 18(2): 328-331.

Ji, F., Zhao, L., Yan, W., Feng, Q. & Lin, J.M. 2008. Determination of triazine herbicides in fruits and vegetables using dispersive solid-phase extraction coupled with LC-MS. Journal of Separation Science 31(6-7): 961-968.

Khaledi, M.G. 1998. High-performance capillary electrophoresis. Theory, techniques and applications. Chemical Analysis 146: 4930-4931.

Landers, J.P. 1998. Handbook of capillary electrophoresis. Journal of Liquid Chromatography & Related Technologies 21(1-2): 263-266.

LeBaron, H.M., McFarland, J.E. & Burnside, O.C. 2008. Chapter 1 - The Triazine Herbicides: A Milestone in the Development of Weed Control Technology. Volume 2016. Elsevier.

Li, X., Sun, Y., Sun, Q., Liang, L., Piao, H., Jiang, Y., Yu, A., Song, D. & Wang, X. 2017. Ionic-liquid-functionalized zinc oxide nanoparticles for the solid-phase extraction of triazine herbicides in corn prior to high-performance liquid chromatography analysis. Journal of Separation Science 40(14): 2992-2998.

Liang, L., Wang, X., Sun, Y., Ma, P., Li, X., Piao, H., Jiang, Y. & Song, D. 2018. Magnetic solid-phase extraction of triazine herbicides from rice using metal-organic framework mil-101(cr) functionalized magnetic particles. Talanta 179(11): 512-519.

Liu, T., Cao, P., Geng, J., Li, J., Wang, M., Wanga, M., Li, X. & Yin, D. 2014. Determination of triazine herbicides in milk by cloud point extraction and high-performance liquid chromatography. Food Chemistry 142: 358-364.

Lu, Y., Wang, D., Kong, C., Zhong, H. & Breadmore, M.C. 2014. Analysis of aromatic acids by nonaqueous capillary electrophoresis with ionic-liquid electrolytes. Electrophoresis 35(23): 3310-3316.

Nousiainen, A.O., Björklöf, K., Sagarkar, S., Nielsen, J.L., Kapley, A. & Jørgensen, K.S. 2015. Bioremediation strategies for removal of residual atrazine in the boreal groundwater zone. Applied Microbiology and Biotechnology 99(23): 10249-10259.

Pantůčková, P., Kubáň, P. & Boček, P. 2015. Sensitivity enhancement in direct coupling of supported liquid membrane extractions to capillary electrophoresis by means of transient isotachophoresis and large electrokinetic injections. Journal of Chromatography A 1389: 1-7.

Piutti, S., Hallet, S., Rousseaux, S., Philippot, L., Soulas, G. & Martin-Laurent, F. 2002. Accelerated mineralisation of atrazine in maize rhizosphere soil. Biology and Fertility of Soils 36(6): 434-441.

Qi, M., Yien, L. & Heng, H. 2017. Integration of the free liquid membrane into electrokinetic supercharging-capillary electrophoresis for the determination of cationic herbicides in environmental water samples. Journal of Chromatography A 1481: 145-151.

Reutemann, W., Kieczka, H., Reutemann, W. & Kieczka, H. 2011. Formic acid. Ullmann’s Encyclopedia of Industrial Chemistry. pp. 1-22.

Rodríguez-González, N., González-Castro, M.J., Beceiro-González, E., Muniategui-Lorenzo, S. & Prada-Rodríguez, D. 2014. Determination of triazine herbicides in seaweeds: Development of a sample preparation method based on matrix solid phase dispersion and solid phase extraction clean-up. Talanta 121: 194-198.

Safe Environments Programme. 2006. Guidelines for Canadian Drinking Water Quality: Guideline technical document: Trihalomethanes - Health Canada. 1993: 1-9.

Sagarkar, S., Mukherjee, S., Nousiainen, A., Björklöf, K., Purohit, H.J., Jorgensen, K.S. & Kapley, A. 2013. Monitoring bioremediation of atrazine in soil microcosms using molecular tools. Environmental Pollution 172: 108-115.

Sanagi, M.M., Abbas, H.H., Ibrahim, W.A.W. & Aboul-Enien, H.Y. 2012. Dispersive liquid-liquid microextraction method based on solidification of floating organic droplet for the determination of triazine herbicides in water and sugarcane samples. Food Chemistry 133(2): 557-562.

See, H.H., Marsin Sanagi, M., Ibrahim, W.A.W. & Naim, A.A. 2010. Determination of triazine herbicides using membrane-protected carbon nanotubes solid phase membrane tip extraction prior to micro-liquid chromatography. Journal of Chromatography A 1217(11): 1767-1772.

Siripattanakul, S., Wirojanagud, W., McEvoy, J., Limpiyakorn, T. & Khan, E. 2009. Atrazine degradation by stable mixed cultures enriched from agricultural soil and their characterization. Journal of Applied Microbiology 106(3): 986-992.

Wang, H., Li, G., Zhang, Y., Chen, H., Zhao, Q., Song, W., Xu, Y., Jin, H. & Ding, L. 2012. Determination of triazine herbicides in cereals using dynamic microwave-assisted extraction with solidification of floating organic drop followed by high-performance liquid chromatography. Journal of Chromatography A 1233: 36-43.

Wang, X. & Chen, Y. 2009. Determination of aromatic amines in food products and composite food packaging bags by capillary electrophoresis coupled with transient isotachophoretic stacking. Journal of Chromatography A 1216(43): 7324-7328.

Watershed Management Section. 2016. Water quality standards for surface waters of the state of washington chapter 173-201a WAC. Water Quality Standards for Surface Waters of the State of Washington (6): 1-134.

Weinberger, R. 2000. Capillary zone electrophoresis: Methods development. In Practical Capillary Electrophoresis. 2nd ed. Massachusetts: Academic Press.

Wen, Y., Liu, H., Han, P., Gao, Y., Luan, F. & Li, X. 2010. Determination of melamine in milk powder, milk and fish feed by capillary electrophoresis: A good alternative to HPLC. Journal of the Science of Food and Agriculture 90(13): 2178-2182.

Yamaguchi, N., Gazzard, D., Scholey, G. & Macdonald, D.W. 2003. Concentrations and hazard assessment of pcbs, organochlorine pesticides and mercury in fish species from the upper thames: River pollution and its potential effects on top predators. Chemosphere 50(3): 265-273.

Yan, Y., Yu, J., Jiang, Y., Hu, Y., Cai, M., Hsam, S.L.K. & Zeller, F.J. 2003. Capillary electrophoresis separation of high. Electrophoresis 24: 1429-1436.

Yang, X., Yu, R., Zhang, S., Cao, B., Liu, Z., Lei, L., Li, N., Wang, Z., Zhang, L., Zhang, H. & Chen, Y. 2014. Aqueous two-phase extraction for determination of triazine herbicides in milk by high-performance liquid chromatography. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences 972: 111-116.

Zhao, G., Song, S., Wang, C., Wu, Q. & Wang, Z. 2011. Determination of triazine herbicides in environmental water samples by high-performance liquid chromatography using graphene-coated magnetic nanoparticles as adsorbent. Analytica Chimica Acta 708(1-2): 155-159.

*Corresponding author; email: noorfatimah@usm.my

 

 

 

 

previous