Sains Malaysiana 49(6)(2020): 1303-1312

http://dx.doi.org/10.17576/jsm-2020-4906-08

 

Anti-inflammatory Effect of Tamarind Seed Coat Extract against LPS-Induced RAW264.7 Macrophages
(Kesan Anti-Keradangan Ekstrak Lapisan Biji Asam Jawa terhadap Penggalak LPS RAW264.7 Makrofaj)

 

JIRAPA PUNTARUT1, WIPAWADEE SIANGLUM2, SUPITA TANASAWET3, PENNAPA CHONPATHOMPIKUNLERT4 & WANIDA SUKKETSIRI1*

 

1Department of Pharmacology, Faculty of Science, Prince of Songkla University, Songkhla, 90110 Thailand

 

2Department of Microbiology, Faculty of Science, Prince of Songkla University, Songkhla, 90110

Thailand

 

3Department of Anatomy, Faculty of Science, Prince of Songkla University, Songkhla, 90110, Thailand

 

4Expert Center of Innovative Health Food, Thailand Institute of Scientific and Technological Research (TISTR), Pathumthani, 12120, Thailand

 

Received: 2 August 2019/Accepted: 17 February 2020

 

ABSTRACT

Inflammatory response is modulated by stimulated immune cells, and has a pivotal role in host defense system against various stimuli. In this study, we evaluated the anti-inflammatory property of tamarind seed coat extract (TSCE) in lipopolysaccharide (LPS)-induced RAW264.7 macrophages. Various concentrations of TSCE (10, 25, and 50 µg mL-1) were applied and then stimulated with LPS (1 μg mL-1) in RAW264.7 macrophages and the level of reactive oxygen species (ROS) and nitric oxide (NO) were measured. Besides, enzyme-linked immunosorbent assay (ELISA) was used to measure the level of pro-inflammatory cytokines. Our results showed that TSCE suppressed LPS-induced intracellular ROS production and suppressed the NO levels in a dose-dependent manner. Significantly, the anti-inflammatory activity was correlated with a lowered LPS-stimulated TNF-α and IL-1β pro-inflammatory cytokines. These results implied that TSCE possess potent anti-inflammatory activity, which supported new insights into the TSCE utilization to protect inflammation-related disorders.

 

Keywords: Interleukin-1β; reactive oxygen species; Tamarindus indica; tumor necrosis factor alpha

 

ABSTRAK

Tindak balas keradangan dimodulasi oleh sel-sel imun yang dirangsang dan memainkan peranan penting dalam sistem pertahanan perumah terhadap pelbagai rangsangan. Dalam kajian ini, kami menilai sifat anti-radang daripada ekstrak lapisan biji asam jawa (TSCE) pada lipopolisakarida (LPS) yang diaruh makrofaj RAW264.7. Pelbagai kepekatan TSCE (10, 25 dan 50 µg mL-1) digunakan dan kemudian dirangsang dengan LPS (1 μg mL-1) pada makrofaj RAW264.7 dan tahap spesies oksigen reaktif (ROS) dan nitrik oksida (NO) diukur. Selain itu, asai imunosorben berkait enzim (ELISA) digunakan untuk mengukur tahap sitokin pro-radang. Hasil kajian menunjukkan bahawa TSCE menindas pengeluaran intraselular ROS yang disebabkan oleh LPS serta menindas aras NO bergantung pada dos atau kepekatan. Aktiviti anti-radang berkorelasi dengan penurunan LPS yang merangsang sitokin pro-radang TNF-α dan IL-1β secara ketara. Hasil ini menunujukkan bahawa TSCE memiliki aktiviti anti-radang yang tinggi sekaligus menyokong pandangan baru tentang penggunaan TSCE dalam melindungi gangguan yang berkaitan dengan keradangan.

 

Kata kunci: Faktor nekrosis tumor alfa; interleukin-1β; spesies oksigen reaktif; Tamarindus indica

 

REFERENCES

Aengwanich, W., Suttajit, M., Srikhun, T. & Boonsorn, T. 2009. Antibiotic effect of polyphenolic compound extracted from tamarind (Tamarindus indica L.) seed coat on productive performance of broilers. International Journal of Poultry Science 8(8): 749-751.

Alinejhad, D., Asayesh, M.A. & Asayesh, M. 2016. Determination of the anti-inflammatory property of tannins from the rind of calamansi (Citrus microcarpa, Rutaceae). Journal of International Oral Health 8(5): 546-553.

Ameeramja, J. & Perumal, E. 2018. Possible modulatory effect of tamarind seed coat extract on fluoride-induced pulmonary inflammation and fibrosis in rats. Inflammation 41(3): 886-895.

Ameeramja, J., Panneerselvam, L., Govindarajan, V., Jeyachandran, S., Baskaralingam, V. & Perumal, E. 2016. Tamarind seed coat ameliorates fluoride induced cytotoxicity, oxidative stress, mitochondrial dysfunction and apoptosis in A549 cells. Journal of Hazardous Materials 15(301): 554-565.

Babu, P.V. & Liu, D. 2008. Green tea catechins and cardiovascular health: An update. Current Medicinal Chemistry 15(18): 1840-1850.

Bhadoriya, S.S., Ganeshpurkar, A., Bhadoriya, R.P.S., Sahu, S.K. & Patel, J.R. 2018. Antidiabetic potential of polyphenolic-rich fraction of Tamarindus indica seed coat in alloxan-induced diabetic rats. Journal of Basic and Clinical Physiology and Pharmacology 29(1): 37-45.

Bhadoriya, S.S., Ganeshpurkar, A., Narwaria, J., Rai, G. & Jain, A.P. 2011. Tamarindus indica: Extent of explored potential. Pharmacognosy Reviews 5(9): 73-81.

Bryan, N., Ahswin, H., Smart, N., Bayon, Y., Wohlert, S. & Hunt, J.A. 2012. Reactive oxygen species (ROS)-a family of fate deciding molecules pivotal in constructive inflammation and wound healing. European Cells and Materials 24: 249-265.

Chen, L., Deng, H., Cui, H., Fang, J., Zuo, Z., Deng, J., Li, Y., Wang, X. & Zhao, L. 2018. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 23: 9(6): 7204-7218.

Choosri, N., Tanasawet, S., Chonpathompikunlert, P. & Sukketsiri, W. 2017. Apium graveolens extract attenuates adjuvant induced arthritis by reducing oxidative stress. Journal of Food Biochemistry 41(1): e12276.

Duque, G.A. & Descoteaux, A. 2014. Macrophage cytokines: Involvement in immunity and infectious diseases. Frontiers in Immunology 5: 491.

Ferrero-Miliani, L., Nielsen, O., Andersen, P. & Girardin, S. 2007. Chronic inflammation: Importance of NOD2 and NALP3 in interleukin-1β generation. Clinical and Experimental Immunology 147(2): 227-235.

Jayaraman, J., Jesudoss, V.A., Menon, V.P. & Namasivayam, N. 2012. Anti-inflammatory role of naringenin in rats with ethanol induced liver injury. Toxicology Mechanisms and Methods 22(7): 568-576.

Komutarin, T., Azadi, S., Butterworth, L., Keil, D., Chitsomboon, B., Suttajit, M. & Meade, B.J. 2004. Extract of the seed coat of Tamarindus indica inhibits nitric oxide production by murine macrophages in vitro and in vivo. Food and Chemical Toxicology 42(4): 649-658.

Leavy, O. 2014. Inflammation: regulating ROS. Nature Reviews Immunology 14(6): 357.

Lima, Z.M., da Trindade, L.S., Santana, G.C., Padilha, F.F., da Costa Mendonça, M., da Costa, L.P., López, J.A. & Macedo, M.L.H. 2017. Effect of Tamarindus indica L. and Manihot esculenta extracts on antibiotic-resistant bacteria. Pharmacognosy Research 9(2): 195-199.

Martinez-Micaelo, N., González-Abuín, N., Terra, X., Richart, C., Ardèvol, A., Pinent, M. & Blay, M. 2012. Omega-3 docosahexaenoic acid and procyanidins inhibit cyclo-oxygenase activity and attenuate NF-κB activation through a p105/p50 regulatory mechanism in macrophage inflammation. Biochemical Journal 441(2): 653-663.

Medzhitov, R. 2010. Inflammation 2010: New adventures of an old flame. Cell 140(6): 771-776.

Mittal, M., Siddiqui, M.R., Tran, K., Reddy, S.P. & Malik, A.B. 2014. Reactive oxygen species in inflammation and tissue injury. Antioxidants and Redox Signaling 20(7): 1126-1167.

Nakchat, O., Meksuriyen, D. & Pongsamart, S. 2014a. Antioxidant and anti-lipid peroxidation activities of Tamarindus indica seed coat in human fibroblast cells. Indian Journal of Experimental Biology 52(2): 125-132.

Nakchat, O., Nalinratana, N., Meksuriyen, D. & Pongsamart, S. 2014b. Tamarind seed coat extract restores reactive oxygen species through attenuation of glutathione level and antioxidant enzyme expression in human skin fibroblasts in response to oxidative stress. Asian Pacific Journal of Tropical Biomedicine 4(5): 379-385.

Park, M., Cho, H., Jung, H., Lee, H. & Hwang, K.T. 2014. Antioxidant and anti‐inflammatory activities of tannin fraction of the extract from black raspberry seeds compared to grape seeds. Journal of Food Biochemistry 38(3): 259-270.

Sandesh, P., Velu, V. & Singh, R.P. 2014. Antioxidant activities of tamarind (Tamarindus indica) seed coat extracts using in vitro and in vivo models. Journal of Food Science and Technology 51(9): 1965-1973.

Schaible, A.M., Traber, H., Temml, V., Noha, S.M., Filosa, R., Peduto, A., Weinigel, C., Barz, D., Schuster, D. & Werz, O. 2013. Potent inhibition of human 5-lipoxygenase and microsomal prostaglandin E2 synthase-1 by the anti-carcinogenic and anti-inflammatory agent embelin. Biochemical Pharmacology 86(4): 476-486.

Schieber, M. & Chandel, N.S. 2014. ROS function in redox signaling and oxidative stress. Current Biology 24(10): R453-R462.

Sergent, T., Piront, N., Meurice, J., Toussaint, O. & Schneider, Y.J. 2010. Anti-inflammatory effects of dietary phenolic compounds in an in vitro model of inflamed human intestinal epithelium. Chemico-Biological Interactions 188(3): 659-667.

Sharma, J.N., Al-Omran, A. & Parvathy, S.S. 2007. Role of nitric oxide in inflammatory disease. Inflammopharmacology 15(6): 252-259.

Sukketsiri, W., Tanasawet, S., Moolsap, F., Tantisira, M.H., Hutamekalin, P. & Tipmanee, V. 2019. ECa 233 suppresses LPS-induced proinflammatory responses in macrophages via suppressing ERK1/2, p38 MAPK and Akt pathways. Biological and Pharmaceutical Bulletin 42(8): 1358-1365.

Suksomtip, M., Ukrisdawithid, S., Bhusawang, P. & Pongsamart, S. 2010. Phenolic compound content, antioxidant and radical-scavenging properties of methanolic extracts from the seed coat of certain Thai tamarind cultivars. Journal of Food Biochemistry 34(5): 916-931.

Sundaram, M.S., Hemshekhar, M., Santhosh, M.S., Paul, M., Sunitha, K., Thushara, R.M., Naveen Kumar, S.K., Naveen, S., Devaraja, S., Rangappa, K.S., Kemparaju, K. & Girish, K.S. 2015. Tamarind Seed (Tamarindus indica) extract ameliorates adjuvant-induced arthritis via regulating the mediators of cartilage/bone degeneration, inflammation and oxidative stress. Scientific Reports 10(5): 11117.

Tewtrakul, S., Itharat, A., Thammaratwasik, P. & Ooraikul, B. 2008. Anti-allergic and anti-microbial activities of some Thai crops. Songklanakarin Journal of Science and Technology 30(4): 467-473.

Tungmunnithum, D., Thongboonyou, A., Pholboon, A. & Yangsabai, A. 2018. Flavonoids and other phenolic compounds from medicinal plants for pharmaceutical and medical aspects: An overview. Medicines 5(3): 93.

Vadivel, V. & Pugalenthi, M. 2010. Evaluation of nutritional value and protein quality of an under-utilized tribal food legume. Indian Journal of Traditional Knowledge 9(4): 791-797.

Wiart, C. 2007. Ethnopharmacology of Medicinal Plants: Asia and the Pacific. Totowa, NJ: Humana Press Inc.

 

*Corresponding author; email: wanida.su@psu.ac.th

 

 

 

 

previous