Sains Malaysiana 49(6)(2020): 1389-1400

http://dx.doi.org/10.17576/jsm-2020-4906-17

 

Enhancing Effect of Vitexin on Osteogenic Activity of Murine Pre-Osteoblastic MC3T3-E1 Cells

(Kesan Peningkatan Viteksin terhadap Aktiviti Osteogenik Sel MC3T3-E1 Pra-Osteoblastik Murin)

 

XIAOHAN YUAN1, HAIYAN HAN2, ZHAOHUI LUO3, QIUXUE WANG2, PEIJIA TANG2, ZHIHUI ZHANG2, YUJIE FU2 & CHENGBO GU1,2*

 

1Key Laboratory of Agricultural Microbiology of Heilongjiang Provincial Science and Technology Department, Northeast Agricultural University, Harbin, 150030, China

 

2Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, China

 

3Fankou Lead-Zinc Mine Staff Hospital, Shenzhen Zhongjin Lingnan Nonfemet Company Limited, Renhua, 512325, China

 

Received: 17 September 2019/Accepted: 14 February 2020

 

ABSTRACT

Vitexin (5,7,4-trihydroxyflavone-8-glucoside), a natural flavone present in a variety of plants, is well known for its rich pharmacological properties. However, its osteogenic activity remains unclear to date. The purpose of this study was to explore the effects of vitexin on osteogenic activity in murine pre-osteoblastic MC3T3-E1 cells using the MTT assay for cell proliferation, alkaline phosphatase (ALP) activity assay for cell differentiation, and Von Kossa staining for cell mineralization. Quantitative real-time PCR was used for the detection of osteocalcin (OCN) mRNA expression in cells. Furthermore, effects of vitexin on the differentiation and matrix mineralization of dexamethasone (DEX)-suppressed cells was also investigated. The results showed vitexin could significantly enhance cell proliferation in a low concentration range of 10-10-10-6 μg mL-1. ALP activity was significantly increased after the cells were treated with vitexin at 10-8 and 10-6 μg mL-1. The expression levels of the osteogenic OCN gene in cells treated with vitexin at 10-6, 10-8, and 10-10 μg mL-1 were improved by 3.1-fold, 5.8-fold, and 4.2-fold over the control, respectively. Additionally, vitexin (10-8 μg mL-1) significantly alleviated the inhibitory effect of osteoblast differentiation and mineralization induced by DEX. Collectively, our findings suggest vitexin could enhance cell proliferation and osteogenic differentiation of MC3T3-E1 cells, as well as rescue the inhibitory effect of cell differentiation and matrix mineralization induced by DEX. Therefore, vitexin may be useful as a promising therapeutic agent for bone disease and plays an important role in the prevention of glucocorticoid-induced osteoporosis.

 

Keywords: Anti-osteoporosis; dexamethasone; MC3T3-E1 cells; osteogenic activity; vitexin

 

ABSTRAK

Viteksin (5,7,4-trihidroksiflavon-8-glucosida), merupakan flavon semula jadi yang terdapat dalam pelbagai jenis tumbuhan juga terkenal dengan khasiat farmakologinya yang tinggi. Walau bagaimanapun, aktiviti osteogeniknya masih belum jelas sehingga kini. Tujuan kajian ini adalah untuk mengkaji kesan viteksin terhadap aktiviti osteogenik pada sel MC3T3-E1 pra-osteoblas murin menggunakan asai MTT untuk proliferasi sel, asai aktiviti alkali fosfatase (ALP) untuk pembezaan sel dan pewarnaan Von Kossa untuk mineralisasi sel. PCR masa nyata kuantitatif digunakan untuk mengesan ekspresi mRNA osteokalsin (OCN) dalam sel. Selanjutnya, kesan viteksin terhadap pembezaan dan mineralisasi matriks deksametason (DEX) sel yang ditindas juga dikaji. Hasil kajian menunjukkan viteksin dapat meningkatkan proliferasi sel secara signifikan dalam julat kepekatan yang rendah iaitu 10-10-10-6 μg mL-1. Aktiviti ALP meningkat dengan ketara setelah sel dirawat dengan viteksin pada kepekatan 10-8 dan 10-6 μg mL-1. Tahap ekspresi gen OCN osteogenik dalam sel yang dirawat dengan viteksin pada 10-6, 10-8 dan 10-10 μg mL-1 masing-masing meningkat sebanyak 3.1, 5.8 dan 4.2 kali ganda daripada kawalan. Selain itu, viteksin dengan kepekatan 10-8 μg mL-1 juga didapati meningkatkan kesan perencatan pembezaan osteoblas dan mineralisasi yang diaruh oleh DEX. Secara kolektifnya, hasil kajian ini menunjukkan bahawa viteksin dapat meningkatkan proliferasi sel dan pembezaan osteogenik sel MC3T3-E1, serta melindungi daripada kesan perencatan pembezaan osteoblas dan mineralisasi yang diaruh oleh DEX. Oleh itu, viteksin berpotensi digunakan sebagai agen terapi yang baik bagi merawat penyakit tulang dan memainkan peranan penting dalam pencegahan osteoporosis yang disebabkan oleh glukokortikoid.

 

Kata kunci: Aktiviti osteogenik; anti-osteoporosis; deksametason; sel MC3T3-E1; viteksin

 

REFERENCES

Adami, G. & Saag, K.G. 2019. Glucocorticoid-induced osteoporosis update. Current Opinion in Rheumatology 31(4): 388-393.

Adler, R.A. 2019. Glucocorticoid-induced osteoporosis: Management challenges in older patients. Journal of Clinical Densitometry 22(1): 20-24.

Arriero Mdel, M., Ramis, J.M., Perello, J. & Monjo, M. 2012. Differential response of MC3T3-E1 and human mesenchymal stem cells to inositol hexakisphosphate. Cellular Physiology and Biochemistry 30: 974-986.

Balasubramanian, A., Wade, S.W., Adler, R.A., Saag, K., Pannacciulli, N. & Curtis, J.R. 2018. Glucocorticoid exposure and fracture risk in a cohort of US patients with selected conditions. Journal of Bone and Mineral Research 33: 1881-1888.

Bolognese, M.A. 2010. SERMs and SERMs with estrogen for postmenopausal osteoporosis. Reviews in Endocrine and Metabolic Disorders 11(4): 253-259.

Canalis, E. 2003. Mechanisms of glucocorticoid-induced osteoporosis. Current Opinion in Rheumatology 15(4): 454-457.

Canalis, E. & Delany, A.M. 2002. Mechanisms of glucocorticoid action in bone. Annals of the New York Academy of Sciences 966: 73-81.

Caplan, A., Fett, N., Rosenbach, M., Werth, V.P. & Micheletti, R.G. 2017. Prevention and management of glucocorticoid-induced side effects: A comprehensive review: Ocular, cardiovascular, muscular, and psychiatric side effects and issues unique to pediatric patients. Journal of the American Academy of Dermatology 76: 201-207.

Chang, E.J., Lee, W.J., Cho, S.H. & Choi, S.W. 2003. Proliferative effects of flavan-3-ols and propelargonidins from rhizomes of Drynaria fortunei on MCF-7 and osteoblastic cells. Archives of Pharmacal Research 26: 620-630.

Che, C.T., Wong, M.S. & Lam, C.W. 2016. Natural products from Chinese medicines with potential benefits to bone health. Molecules 21(3): 239.

Chen, J.S. & Sambrook, P.N. 2012. Antiresorptive therapies for osteoporosis: A clinical overview. Nature Reviews Endocrinology 8: 81-91.

Chen, L.R., Wen, Y.T., Kuo, C.L. & Chen, K.H. 2014. Calcium and vitamin D supplementation on bone health: Current evidence and recommendations. International Journal of Gerontology 8(4): 183-188.

Dong, L.Y., Fan, Y.F., Shao, X. & Chen, Z.W. 2011. Vitexin protects against myocardial ischemia/reperfusion injury in Langendorff-perfused rat hearts by attenuating inflammatory response and apoptosis. Food and Chemical Toxicology 49: 3211-3216.

Feng, Y.L. & Tang, X.L. 2014. Effect of glucocorticoid-induced oxidative stress on the expression of Cbfa1. Chemico-Biological Interactions 207: 26-31.

Fu, Y., Zu, Y., Liu, W., Hou, C., Chen, L., Li, S., Shi, X. & Tong, M. 2007. Preparative separation of vitexin and isovitexin from pigeonpea extracts with macroporous resins. Journal of Chromatography A 1139: 206-213.

Gu, C.B., Liu, Z.Z., Yuan, X.H., Li, W., Zu, Y.Z. & Fu, Y.Y. 2017. Preparation of vitexin nanoparticles by combining the antisolvent precipitation and high pressure homogenization approaches followed by lyophilization for dissolution rate enhancement. Molecules 22(12): 2038.

Guanabens, N., Gifre, L. & Peris, P. 2014. The role of Wnt signaling and sclerostin in the pathogenesis of glucocorticoid-induced osteoporosis. Current Osteoporosis Reports 12: 90-97.

Guo, A.J., Choi, R.C., Cheung, A.W., Chen, V.P., Xu, S.L., Dong, T.T., Chen, J.J. & Tsim, K.W. 2011. Baicalin, a flavone, induces the differentiation of cultured osteoblasts: An action via the Wnt/beta-catenin signaling pathway. Journal of Biological Chemistry 286(32): 27882-27893.

Hadji, P. 2012. The evolution of selective estrogen receptor modulators in osteoporosis therapy. Climacteric 15(6): 513-523.

He, M., Min, J.W., Kong, W.L., He, X.H., Li, J.X. & Peng, B.W. 2016. A review on the pharmacological effects of vitexin and isovitexin. Fitoterapia 115: 74-85.

Hessle, L., Johnson, K.A., Anderson, H.C., Narisawa, S., Sali, A., Goding, J.W., Terkeltaub, R. & Millan, J.L. 2002. Tissue-nonspecific alkaline phosphatase and plasma cell membrane glycoprotein-1 are central antagonistic regulators of bone mineralization. Proceedings of the National Academy of Sciences of the United States of America 99: 9445-9449.

Kim, J.H., Lee, B.C., Kim, J.H., Sim, G.S., Lee, D.H., Lee, K.E., Yun, Y.P. & Pyo, H.B. 2005. The isolation and antioxidative effects of vitexin from Acer palmatum. Archives of Pharmacal Research 28(2): 195-202.

Komori, T. 2016. Glucocorticoid signaling and bone biology. Hormone and Metabolic Research 48(11): 755-763.

Kulak Júnior J., Kulak, C.A. & Taylor, H.S. 2010. SERMs in the prevention and treatment of postmenopausal osteoporosis: An update. Arquivos Brasileiros de Endocrinologia & Metabologia 54(2): 200-205.

Lee, N.K., Choi, Y.G., Baik, J.Y., Han, S.Y., Jeong, D.W., Bae, Y.S., Kim, N. & Lee, S.Y. 2005. A crucial role for reactive oxygen species in RANKL-induced osteoclast differentiation. Blood 106: 852-859.

Lin, Z., Jiang, Z.L., Chen, L.H., Sun, Y., Chen, S.Z., Zhou, P., Xia, A.X., Jin, H., Zhu, Y.W. & Chen, D.Y. 2017. Glucocorticoid-induced leucine zipper may play an important role in icariin by suppressing osteogenesis inhibition induced by glucocorticoids in osteoblasts. Biomedicine & Pharmacotherapy 90: 237-243.

Luo, S., Yang, Y., Chen, J., Zhong, Z., Huang, H., Zhang, J. & Cui, L. 2016. Tanshinol stimulates bone formation and attenuates dexamethasone-induced inhibition of osteogenesis in larval zebrafish. Journal of Orthopaedic Translation 4: 35-45.

Ma, X.Q., Zheng, C.J., Zhang, Y., Hu, C.L., Lin, B., Fu, X.Y., Han, L.Y., Xu, L.S., Rahman, K. & Qin, L.P. 2013. Antiosteoporotic flavonoids from Podocarpium: Podocarpum. Phytochemistry Letters 6: 118-122.

Marie, P.J. & Kassem, M. 2011. Osteoblasts in osteoporosis: Past, emerging, and future anabolic targets. European Journal of Endocrinology 165: 1-10.

Miron, R.J., Caluseru, O.M., Guillemette, V., Zhang, Y., Gemperli, A.C., Chandad, F. & Sculean, A. 2013. Influence of enamel matrix derivative on cells at different maturation stages of differentiation. PloS ONE 8: e71008.

Nash, L.A., Sullivan, P.J., Peters, S.J. & Ward, W.E. 2015. Rooibos flavonoids, orientin and luteolin, stimulate mineralization in human osteoblasts through the Wnt pathway. Molecular Nutrition & Food Research 59(3): 443-453.

Niu, Y.B., Li, Y.H., Kong, X.H., Zhang, R., Sun, Y., Li, Q., Li, C., Liu, L., Wang, J. & Mei, Q.B. 2012. The beneficial effect of Radix Dipsaci total saponins on bone metabolism in vitro and in vivo and the possible mechanisms of action. Osteoporosis International 23: 2649-2660.

Nix, A., Paull, C.A. & Colgrave, M. 2015. The flavonoid profile of pigeonpea, Cajanus cajan: A review. Springerplus 4: 125.

Pereira, R.M., Carvalho, J.F., Paula, A.P., Zerbini, C., Domiciano, D.S., Goncalves, H., Danowski, J.S., Marques Neto, J.F., Mendonca, L.M., Bezerra, M.C., Terreri, M.T., Imamura, M., Weingrill, P., Plapler, P.G., Radominski, S., Tourinho, T., Szejnfeld, V.L. & Andrada, N.C. 2012. Guidelines for the prevention and treatment of glucocorticoid-induced osteoporosis. Revista Brasileira De Reumatologia 52(4): 580-593.

Ponnapakkam, T., Katikaneni, R., Sakon, J., Stratford, R. & Gensure, R.C. 2014. Treating osteoporosis by targeting parathyroid hormone to bone. Drug Discovery Today 19(3): 204-208.

Prabhakar, M.C., Bano, H., Kumar, I., Shamsi, M.A. & Khan, M.S. 1981. Pharmacological investigations on vitexin. Planta Medica 43: 396-403.

Wang, W.Z., Olson, D., Cheng, B., Guo, X. & Wang, K.Z. 2012. Sanguis Draconis resin stimulates osteoblast alkaline phosphatase activity and mineralization in MC3T3-E1 cells. Journal of Ethnopharmacology 142(1): 168-174.

Weinstein, R.S. 2011. Glucocorticoid-induced bone disease. New England Journal of Medicine 365: 62-70.

Wu, Z., Yan, D., Xie, Z., Weng, S., Zhou, Q., Li, H., Bai, B., Boodhun, V., Shen, Z., Tang, J. & Yang, L. 2018. Combined treatment with cinnamaldehyde and PTH enhances the therapeutic effect on glucocorticoid-induced osteoporosis through inhibiting osteoclastogenesis and promoting osteoblastogenesis. Biochemical and Biophysical Research Communications 505: 945-950.

Yuan, J., Lin, J., Xu, C., Ye, Q., Xiong, Y., Huang, L. & Yuan, H. 2005. Experimental research on prevention of glucocorticoid-induced avascular necrosis of the femoral head with Tongluo Shenggu capsule. Traditional Chinese Drug Research and Clinical Plarmacology 16: 185-188.

Zaheer, S., LeBoff, M. & Lewiecki, E.M. 2015. Denosumab for the treatment of osteoporosis. Expert Opinion on Drug Metabolism & Toxicology 11(3): 461-470.

Zhang, J., Liu, C., Sun, J., Liu, D. & Wang, P. 2010. Effects of water extract of Cajanus cajan leaves on the osteogenic and adipogenic differentiation of mouse primary bone marrow stromal cells and the adipocytic trans-differentiation of mouse primary osteoblasts. Pharmaceutical Biology 48: 89-95.

Zhang, Y.J., Wang, D.M., Yang, L.N., Zhou, D. & Zhang, J.F. 2014. Purification and characterization of flavonoids from the leaves of Zanthoxylum bungeanum and correlation between their structure and antioxidant activity. PloS ONE 9: e105725.

Zhou, C.H., Zhang, X. & Xu, D.H. 2014. Effect of vitexin on the osteogenic differentiation of rat bone marrow mesenchymal stem cells. Chinese Journal of Modern Drug Application 31(4): 405-408.

 

*Corresponding author; email: dilisatis@163.com

 

 

 

 

previous