Sains Malaysiana 49(7)(2020): 1499-1508

http://dx.doi.org/10.17576/jsm-2020-4907-03

 

Effect of Abscisic Acid on Growth and Physiology of Arabica Coffee Seedlings under Water Deficit Condition

(Kesan Asid Absisik ke atas Pertumbuhan dan Fisiologi Anak Benih Kopi Arabica dalam Keadaan Kekurangan Air)

 

NGOC-THANG VU1, JONG-MAN PARK2, IL-SOEP KIM2, ANH-TUAN TRAN1 & DONG-CHEOL JANG*2

 

1Faculty of Agronomy, Vietnam National University of Agriculture, Hanoi, Vietnam

 

2Department of Horticulture, Kangwon National University, Chuncheon 200-701, Korea

 

Received: 15 September 2019/Accepted: 13 March 2020

 

ABSTRACT

In this study, the effect of abscisic acid (ABA) on growth and physiology of Arabica coffee seedlings under water deficit condition was investigated. To examine the effect of ABA concentration on growth and physiology, six ABA concentrations (0, 10, 50, 100, 150, and 200 mgL-1) were applied by spraying once a day for three days. Additionally, the effect of ABA on physiology of Arabica coffee seedlings under water deficit condition was examined by using two concentrations (50 and 100 mgL-1) compared to non-ABA (0 mgL-1). Foliar application of ABA decreased the growth traits of coffee seedlings in all the ABA concentrations. However, no statically significant difference was observed among the 0, 10, 50, and 100 mgL-1 treatments with growth traits except for the leaf area. Foliar application of ABA decreased the quantum efficiency of photosystem II (Fv/Fm) of Arabica coffee seedlings in watering condition. However, there was no significant difference between 0 (control) and 10 mgL-1 of ABA or 50 and 100 mgL-1 or 150 and 200 mgL-1 of ABA treatment with the Fv/Fm. The application of ABA enhanced drought tolerance of coffee seedlings by increasing the leaf chlorophyll content, Fv/Fm and relative water content in the leaf and reducing the relative ion leakage in the Arabica coffee seedlings. The application of ABA increased the relative water content in the soil and delayed the starting time of wilting point under water deficit condition.

Keywords: Abscisic acid; coffee; growth; physiology; water stress

 

ABSTRAK

Dalam kajian ini, kesan asid absisik (ABA) terhadap pertumbuhan dan fisiologi anak benih kopi Arabica dalam keadaan kekurangan air telah dikaji. Bagi mengkaji kesan kepekatan ABA terhadap pertumbuhan dan fisiologi anak benih kopi ini, enam kepekatan ABA (0, 10, 50, 100, 150 dan 200 mgL-1) telah digunakan dengan penyemburan sekali sehari selama tiga hari. Selain itu, kesan ABA terhadap fisiologi anak benih kopi dalam keadaan kekurangan air telah dikaji menggunakan dua kepekatan (50 dan 100 mgL-1) dan dibandingkan dengan benih tiada-ABA (0 mgL-1). Semburan daun ABA telah mengurangkan sifat pertumbuhan anak benih kopi pada semua kepekatan ABA. Walau bagaimanapun, tidak terdapat perbezaan yang signifikan secara statistik pada ciri pertumbuhan benih antara rawatan ABA 0, 10, 50 dan 100 mgL-1 kecuali pada kawasan daun. Semburan daun ABA menurunkan kecekapan kuantum fotosistem II (Fv / Fm) benih kopi Arabica yang diairkan. Walau bagaimanapun, tidak ada perbezaan yang signifikan antara kepekatan rawatan ABA 0 mgL-1 (kawalan) dan 10 mgL-1 atau 50 dan 100 mgL-1 atau 150 dan 200 mgL-1 dengan Fv/Fm. Penggunaan ABA telah meningkatkan ketahanan anak benih kopi terhadap kekeringan dengan meningkatkan kandungan klorofil, Fv/Fm dan kandungan air relatif di dalam daun, serta mengurangkan kebocoran ion relatif benih kopi Arabica. Penggunaan ABA juga telah meningkatkan kandungan air relatif di dalam tanah dan melambatkan waktu mula titik layu dalam keadaan kekurangan air.

Kata kunci: Asid absisik; fisiologi; ketegasan air; kopi; pertumbuhan

 

REFERENCES

 

Agarwal, S., Sairam, R.K., Srivatava, G.C., Tyagi, A. & Meena, R.C. 2005. Role of ABA, salicylic acid, calcium and hydrogen peroxide on antioxidant enzymes induction in wheat seedlings. Plant Science 169(3): 559-570.

Alves, A.A.C. & Setter, T.L. 2000. Response of cassava to water deficit: Leaf area growth and abscisic acid. Crop Science 40(1): 131-137.

Anbarasi, G., Bhagavathi, G., Vignesh, R., Srinivasan, M. & Somasundaram, S.T. 2015. Effect of exogenous abscisic acid on growth and biochemical changes in the halophyte Suaeda maritima. Journal of Microbiology, Biotechnology and Food Science 4(5): 442-447.

Ashraf, M. 2010. Inducing drought tolerance in plants: Some recent advances. Biotechnology Advances 28: 169-183.

Bakhsh, I., Awan, I., Sadiq, M., Niamatullah, M., Zaman, K.U. & Aftab, M. 2011. Effect of plant growth regulator application at different growth stages on the economical yield potential of coarse rice (Oryza sativa L.). Journal of Animal and Plant Sciences 21(3): 612-616.

Borel, C., Simonneau, T., This, D. & Tardieu, F. 1997. Stomatal conductance and ABA concentration in the xylem sap of barley lines of contrasting genetic origins. Australian Journal Plant Physiology 24(5): 607-615.

Carrow, R.N. 1996. Drought avoidance characteristics of diverse tall fescue cultivars. Crop Science 36(2): 371-377.

Cousson, A. 2009. Involvement of phospholipase C-independent calcium-mediated abscisic acid signaling during Arabidopsis response to drought. Biologia Plantarum 53(1): 53-62.

DaMatta, F.M. & Ramalho, J.D.C. 2006. Impacts of drought and temperature stress on coffee physiology and production: A review. Brazilian Journal Plant of Physiology 18(1): 55-81.

Farooq, U. & Bano, A. 2006. Effects of abscisic acid and chlorocholine chloride on nodulation and biochemical content of Vigna radiata L. under water stress. Pakistan Journal Botany 38(5): 1511-1518.

Finkelstein, R.R., Gampala, S.S.L. & Rock, C.D. 2002. Abscisic acid signaling in seeds and seedlings. Plant Cell 14: 15-45.

Franks, P.J. & Farquhar, G.D. 2001. The effect of exogenous abscisic acid on stomatal development, stomatal mechanics, and leaf gas exchange in Tradescantia virginiana. Plant Physiology 125(2): 935-942.

Hala, E.M. & Ghada, S.M.I. 2009. The role of abscisic acid in the response of two different wheat varieties to water deficit. Zeitschrift fur Naturforsch C 64(1-2): 77-84.

Hoagland, D.R. & Arnon, D.I. 1950. The water-culture method for growing plants without soil. California Agricultural Experiment Station Circular 347: 1-32.

Jiang, Y. & Huang, B. 2002. Protein alterations in tall fescue in response to drought stress and abscisic acid. Crop Science 42(1): 202-207.

Larkindale, J. & Knight, M.K. 2002. Protection against heat stress-induced oxidative damage in Arabidopsis involves calcium abscisic acid, ethylene, and salicylic acid. Plant Physiology 128(2): 682-695.

Leung, J. & Giraudat, J. 1998. Abscisic acid signal transduction. Annual Review Plant Physiology and Plant Molecular Biology 49: 199-222.

Li, J., Wang, X.Q., Watson, M.B. & Assmann, S.M. 2000. Regulation of abscisic acid-induced stomatal closure and anion channels by guard cell AAPK kinase. Science 287(5451): 300-303.

Li, X.J., Yang, M.F., Chen, H., Qu, L.Q., Chen, F. & Shen, A.H. 2010. Abscisic acid pretreatment enhances salt tolerance of rice seedlings: Proteomic evidence. Biochimica et Biophysica Acta 1804(4): 929-940.

Ludewig, M., Dorffling, K. & Seifert, H. 1988. Abscisic acid and water transport in sunflowers. Planta 175(3): 325-333.

Lu, G.H., Ren, D.L., Wang, X.Q., Wu, J.K. & Zhao, M.S. 2010. Evaluation on drought tolerance of maize hybrids in China. Journal of Maize Sciences 2010(3): 20-24.

Munns, R. & Cramer, G.R. 1996. Is coordination of leaf and root growth mediated by abscisic acid? Opinion. Plant and Soil 185(1): 33-49.

Pinheiro, H.A., DaMatta, F.M., Chaves, A.R.M., Loureiro, M.E. & Ducatti, C. 2005. Drought tolerance is associated with rooting depth and stomatal control of water use in clones of Coffea canephora. Annals of Botany 96(1): 101-108.

Planes, M.D., Ninoles, R., Rubio, L., Bissoli, G., Bueso, E., Garcia-Sanchez, M.J., Alejandro, S., Gonzalez-Guzman, M., Hedrich, R., Rodriguez, P.L., Fernandez, J.A. & Serrano, R. 2015. A mechanism of growth inhibition by abscisic acid in germinating seeds of Arabidopsis thaliana based on inhibition of plasma membrane H+-ATPase and decreased cytosolic pH, K+, and anions. Journal of Experimental Botany 66(3): 813-825.

Pospisilova, J., Synkova, H., Haisel, D. & Batkova, P. 2009. Effect of abscisic acid on photosynthetic parameters during ex vitro transfer of micro propagated tobacco plantlets. Boilogia Plantarum 53(1): 11-20.

Pospısilova, J., Vagner, M., Malbeck, J., Travnıckova, A. & Batkova, P. 2005. Interactions between abscisic acid and cytokinins during water stress and subsequent rehydration. Boilogia Plantarum 49(4): 533-540.

Rajasekaran, L.R. & Blake, T.J. 1999. New plant growth regulators protect photosynthesis and enhance growth under drought of jack pine seedlings. Journal of Plant Growth Regulation 18(4): 175-181.

Sewelam, N., Dowidar, S., Abo-Kassem, E.A. & Sobhy, S. 2017. Study of the interactive effects of calcium and abscisic acid on drought stressed Triticum aestivum seedlings. Egyptian Journal of Botany 57(7th International conference): 215-232.

Sharp, R.E., Wu, Y., Voetberg, G.S., Saab, I.N. & LeNoble, M.E. 1994. Confirmation that abscisic acid accumulation is required for maize primary root elongation at low water potentials. Journal of Experimental Botany 45(Special issue): 1743-1751.

Taylor, I.B., Burbidge, A. & Thompson, A.J. 2000. Control of abscisic acid synthesis. Journal of Experimental Botany 51(350): 1563-1574.

Vu, N.T., Kang, H.M., Kim, Y.S., Choi, K.Y. & Kim, I.S. 2015. Growth, physiology and abiotic stress response to abscisic acid in tomato seedlings. Horticulture, Environment, and Biotechnology 56(3): 294-304.

Wang, S.H., Sui, X.L., Hu, L.P., Sun, J.L., Wei, Y.X. & Zhang, Z.X. 2010. Effects of exogenous abscisic acid pre-treatment of cucumber (Cucumis sativus) seeds on seedling growth and water-stress tolerance. New Zealand Journal of Crop and Horticultural Science 38(1): 7-18.

Waterland, N.L., Finer, J.J. & Jones, M.L. 2010. Abscisic acid applications decrease stomatal conductance and delay wilting in drought-stressed chrysanthemums. HortTechnology 20(5): 896-901.

Wintgens, J.N. 2004. Coffee: Growing, Processing, Sustainable Production. A Guidebook for Growers, Processors, Traders, and Researchers. Weinhem: Wiley-VCH Verlag GmbH & Co.

Zhang, J.H., Zhang, X.P. & Liang, J.S. 1995. Exudation rate and hydraulic conductivity of maize roots are enhanced by soil drying and abscisic acid treatment. New Phytologist 131(3): 329-336.

Zhao, M.G., Zhao, X., Wu, Y.X. & Zhang, L.X. 2007. Enhanced sensitivity to oxidative stress in an Arabidopsis nitric oxide synthase mutant. Journal of Plant Physiology 164(6): 737-745.

 

*Corresponding author; email: jdc@kangwon.ac.kr

   

 

 

 

previous