Sains Malaysiana 49(8)(2020): 1951-1957

http://dx.doi.org/10.17576/jsm-2020-4908-17

 

Cellulose Powder from Piper nigrum L. Agro-Industrial Waste: Effect of Preparation Condition on Chemical Structure and Thermal Degradation

(Serbuk Selulosa daripada Sisa Agro-Industri Piper nigrum L.: Kesan Keadaan Penyediaan terhadap Struktur Kimia dan Degradasi Terma)

 

AIN NADIAH SOFIAH AHMAD KHORAIRI1, NOOR SOFFALINA SOFIAN-SENG1*, RIZAFIZAH OTHAMAN2 & KHAIRUL FARIHAN KASIM3

 

1Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

2Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

3School of Bioprocess Engineering, Universiti Malaysia Perlis, 01000 Kangar, Perlis Indera Kayangan, Malaysia

 

Received: 26 January 2020/Accepted: 8 April 2020

 

ABSTRACT

White pepper is generally produced via water retting process to decorticate the pericarp of green pepper. The decorticated pericarp is considered as an agro-industrial waste and environmental pollutant as many farmers still discard the waste into the rivers. These wastes majorly contain cellulose, hemicellulose, pectin, and other organic compound. Cellulose was obtained from alkaline treatment (4 wt. % sodium hydroxides, NaOH) followed by bleaching process. This study reports the effect of soaking cycle in bleaching treatment on the chemical structure and thermal degradation of cellulose. The cellulose obtained from pepper (Piper nigrum L.) pericarp waste were characterised by colour analysis, Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). Increased number of bleaching cycles produced a whiter colour and high thermal stability of cellulose powder. The whiteness index (WI) for high bleaching cycle sample was found significantly high (p<0.05) with the value of 77.00 ± 1.10. Thermal analysis indicates a derivative thermogravimetric analysis (DTG) peak at 332 °C. The FTIR spectrum proven that the condition of bleaching treatment changes the absorption intensity at bands 1732, 1540, and 1460 cm-1 which due to the loss of hemicellulose and lignin. The use of pepper pericarp waste that is usually discarded may provide a sustainable alternative for the production of cellulose.

 

Keywords: Agro-industrial waste; cellulose; white pepper pericarp

 

ABSTRAK

Umumnya lada putih dihasilkan melalui proses perendaman air untuk menanggalkan perikarpa luar lada hijau. Kulit lada yang ditanggalkan ialah sisa agro-industri dan bahan pencemar kerana kebanyakan petani masih membuangnya ke dalam sungai. Sisa ini mengandungi selulosa secara majoritinya, berserta hemiselulosa, pektin dan sebatian organik. Selulosa boleh diperoleh melalui kaedah alkali (4 bt. % larutan natrium hidroksida, NaOH) dan pelunturan. Kajian ini bertujuan untuk melaporkan kesan kitaran rendaman dalam rawatan pelunturan terhadap struktur kimia dan degradasi termal selulosa. Selulosa yang diperoleh daripada sisa perikarpa lada (Piper nigrum L.) dicirikan dengan menggunakan analisis warna, Fourier spektroskopi inframerah (FTIR) dan analisis termogravimetri (TGA). Peningkatan jumlah kitaran rawatan pelunturan, menghasilkan selulosa kulit lada yang lebih putih dan tinggi kestabilan termal. Indeks keputihan (WI) bagi sampel dengan jumlah kitaran rawatan pelunturan yang tinggi, dilihat meningkat secara signifikan (p<0.05) dengan nilai 77.00 ± 1.10. Analisis terma menunjukkan puncak terbitan analisis termogravimetri (DTG) pada suhu 332 °C. Spektrum FTIR membuktikan keadaan penyediaan rawatan pelunturan mengubah keamatan jalur 1732, 1540 dan 1460 cm-1 kerana kehilangan hemiselulosa dan lignin. Penggunaan sisa perikarpa lada yang biasanya dibuang mungkin dapat memberi alternatif dalam menghasilkan selulosa bagi kegunaan industri lain.

 

Kata kunci: Perikarpa lada putih; selulosa; sisa agro-industri

 

REFERENCES

Alemdar, A. & Sain, M. 2008. Isolation and characterization of nanofibers from agricultural residues-wheat straw and soy hulls. Bioresource Technology 99(6): 1664-1671.

Balaji, A.N. & Nagarajan, K.J. 2017. Characterization of alkali treated and untreated new cellulosic fiber from Saharan aloe vera cactus leaves. Carbohydrate Polymers 174: 200-208.

Bhandari, N.L., Mormann, W., Michler, G.H. & Adhikari, R. 2013. Functionalisation of bamboo and sisal fibres cellulose in ionic liquids. Materials Research Innovations 17(4): 250-256.

Bharathiraja, S., Suriya, J., Krishnan, M., Manivasagan, P. & Kim, S.K. 2017. Production of enzymes from agricultural wastes and their potential industrial applications. In Advances in Food and Nutrition Research, edited by Kim, S.K. & Toldrá, F. Massachusetts: Academic Press. pp. 80: 125-148.

Bunchol, A.J. 2011. Interview with Food Technologist Officer Malaysian Pepper Board, Sarawak.

Color iQC and Color iMatch Color Calculations Guide. 2012. Version 8.0: 14.

Fathi, H.I., El-Shazly, A.H., Elkady, M.F. & Madih, K. 2018. Assessment of new technique for production cellulose nanocrystals from agricultural waste. Materials Science Forum 928(August 2018): 83-88.

Henrique, M.A., Silvério, H.A., Neto, W.P.F. & Pasquini, D. 2013. Valorization of an agro-industrial waste, mango seed, by the extraction and characterization of its cellulose nanocrystals. Journal of Environmental Management 121: 202-209.

Ilyas, R.A., Sapuan, S.M., Sanyang, M.L., Ishak, M.R. & Zainudin, E.S. 2018. Nanocrystalline cellulose as reinforcement for polymeric matrix nanocomposites and its potential applications: A review. Current Analytical Chemistry 14(3): 203-225.

Johar, N., Ahmad, I. & Dufresne, A. 2012. Extraction, preparation and characterization of cellulose fibers and nanocrystals from rice husk. Industrial Crops and Products 37(1): 93-99.

Jonoobi, M., Oladi, R., Davoudpour, Y., Oksman, K., Dufresne, A., Hamzeh, Y. & Davoodi, R. 2015. Different preparation methods and properties of nanostructured cellulose from various natural resources and residues: A review. Cellulose 22(2): 935-969.

Jonoobi, M., Harun, J., Mishra, M. & Oksman, K. 2009. Chemical composition, crystallinity and thermal degradation of bleached and unbleached kenaf bast (Hibiscus cannabinus) pulp and nanofibers. BioResources 4(2): 626-639.

Kalia, S., Dufresne, A., Cherian, B.M., Kaith, B.S., Avérous, L., Njuguna, J. & Nassiopoulos, E. 2011. Cellulose-based bio- and nanocomposites: A review. International Journal of Polymer Science 2011: Article ID. 837875.

Kamarulzaman, N.H., Husin, H., Mohayidin, M.G. & Enchi, J. 2013. Buyers’ preferences among pepper farmers in Sarawak. Journal of Agribusiness Marketing 6: 1-13.

Karimi, S., Tahir, P.M., Karimi, A., Dufresne, A. & Abdulkhani, A. 2014. Kenaf bast cellulosic fibers hierarchy: A comprehensive approach from micro to nano. Carbohydrate Polymers 101: 878-885.

Lee, H.L., Chen, G.C. & Rowell, R.M. 2004. Thermal properties of wood reacted with a phosphorus pentoxide-amine system. Journal of Applied Polymer Science 91(4): 2465-2481.

Mandal, A. & Chakrabarty, D. 2011. Isolation of nanocellulose from waste sugarcane bagasse (SCB) and its characterization. Carbohydrate Polymers 86(3): 1291-1299.

Mohd, N.H., Ismail, N.F.H., Zahari, J.I., Fathilah, W., Kargarzadeh, H., Ramli, S., Ahmad, I., Yarmo, M.A. & Othaman, R. 2016. Effect of aminosilane modification on nanocrystalline cellulose properties. Journal of Nanomaterials 2016: Article ID. 4804271.

Mussatto, S.I., Ballesteros, L.F., Martins, S. & Teixeira, J.A. 2012. Use of agro-Industrial wastes in solid-state fermentation processes. In Industrial Waste, edited by Show, K.Y. Rijeka: Intech. pp. 121-140.

Ng, T.S., Ching, Y.C., Awanis, N., Ishenny, N. & Rahman, M.R. 2014. Effect of bleaching condition on thermal properties and UV transmittance of PVA/cellulose biocomposites. Materials Research Innovations 18(sup6): S6-400-S6-404.

Ngadi, N. & Lani, N.S. 2014. Extraction and characterization of cellulose from empty fruit bunch (EFB) fiber. Jurnal Teknologi 68(5): 35-39.

Phanthong, P., Ma, Y., Guan, G. & Abudula, A. 2015. Extraction of nanocellulose from raw apple stem. Journal of the Japan Institute of Energy 94(8): 787-793.

Reddy, J.P. & Rhim, J.W. 2018. Extraction and characterization of cellulose microfibers from agricultural wastes of onion and garlic. Journal of Natural Fibers 15(4): 465-473.

Rosa, M.F., Medeiros, E.S., Malmonge, J.A., Gregorski, K.S., Wood, D.F., Mattoso, L.H.C., Glenn, G., Orts, W.J. & Imam, S.H. 2010. Cellulose nanowhiskers from coconut husk fibers: Effect of preparation conditions on their thermal and morphological behavior. Carbohydrate Polymers 81(1): 83-92.

Sephton, P.S. 2011. Spatial arbitrage in Sarawak pepper prices. Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie 59(3): 405-416.

Silva, M.C., Lopes, O.R., Colodette, J.L., Porto, A.O., Rieumont, J., Chaussy, D., Belgacem, M.N. & Silva, G.G. 2008. Characterization of three non-product materials from a bleached eucalyptus kraft pulp mill, in view of valorising them as a source of cellulose fibres. Industrial Crops and Products 27(3): 288-295.

Yin, O.S., Ahmad, I. & Amin, M.C.I.M. 2015. Effect of cellulose nanocrystals content and pH on swelling behaviour of gelatin based hydrogel. Sains Malaysiana 44(6): 793-799.

Zain, N.F.M., Yusop, M.S. & Ahmad, I. 2014. Preparation and characterization of cellulose and nanocellulose from pomelo (Citrus grandis) albedo. Journal of Nutrition & Food Sciences 5(1): 334.

 

*Corresponding author; email: soffalina@ukm.edu.my

   

 

 

previous