Sains Malaysiana 49(9)(2020): 2129-2139

http://dx.doi.org/10.17576/jsm-2020-4909-11

 

Optimization of Enrichment and Isolation Media of Thermophilic Hydrocarbonoclastic Bacteria Isolated from Oil Reservoir of West Java for Microbial Enhanced Oil Recovery (MEOR) Application

(Pengoptimuman Media Isolasi dan Pengkayaan Bakteria Hidrokarbonoklastik Termofili yang Dipencilkan daripada Takungan Minyak Jawa Barat untuk Aplikasi Perolehan Kembali Minyak Galakan Mikrob (MEOR))

 

DEA INDRIANI ASTUTI, ISTY ADHITYA PURWASENA*, GREGORIUS GILANG SATRIO, KELVIN RACHMAD ANDIKA, GHAIDA ZAINIYA MILLATI, TERA WAHYU DWININGRUM & EVITA MERIANI

 

Department of Microbiology, School of Life Science and Technolog, Bandung Institute of Technology, Jalan Ganesha 10, Bandung West Java, Indonesia

 

Received: 15 January 2020/Accepted: 10 May 2020

 

ABSTRACT

Microbial enhanced oil recovery (MEOR) is a tertiary oil recovery process which aims to increase the crude oil recovery uptake to 55% from its original oil in place. In its application, indigenous microorganisms are commonly used as the main biological agents, but the isolation processes become more complicated due to environment’s extreme condition. This study aims to determine the optimum formulation for the enrichment and isolation medium, in order to obtain a highly diverse of indigenous hydrocarbonoclastic bacteria. The isolation process was carried out in two stages; the isolation of mild oil fraction degrading bacteria, and isolation of the heavy oil fraction degrading bacteria which confirmed by the SARA (saturated, aromatic, resinic, and asphaltic) fraction chromatography analysis. Four enrichment and five isolation media were formulated based on the distinction in the macro-and micronutrient composition. Overall, a total of 92 isolates were successfully isolated. The highest bacterial diversities were achieved in the enrichment medium B (crude oil used as carbon source which supplemented with sodium lactate) and isolation medium I (nutrient agar with twice agar concentration), each with 37 and 33% of obtained isolates, respectively. The newly formulated medium can be further utilized to isolate various types of indigenous bacteria from the oil well which were able to degrade SARA fraction from crude oil. The result showed that ABG2-7 as the isolate with the highest activity on SARA degradation. The amount of 15% inoculum of ABG2-7 isolate was able to degrade heavy crude oil, thus might serve as potential bacteria for MEOR application.

 

Keywords: Bacterial diversities; enrichment media; isolation media; MEOR

 

ABSTRAK

Perolehan kembali minyak galakan mikrob (MEOR) merupakan proses perolehan kembali minyak tertier yang bertujuan untuk meningkatkan perolehan kembali minyak mentah sehingga 55%. Mikroorganisma asli umumnya digunakan sebagai agen biologi tetapi proses pengasingan mikroorganisma tidak mudah untuk dilakukan kerana keadaan persekitaran yang ekstrim. Penyelidikan ini bertujuan untuk menentukan pengoptimuman media pengasingan dan pengkayaan bakteria bagi mendapatkan bakteria hidrokarbonoklastik yang asli. Proses pengasingan dilakukan dalam 2 tahap iaitu pengasingan bakteria yang mendegradasi pecahan minyak secara berat atau ringan dan disahkan dengan melakukan analisis kromatografi SARA (ketepuan, aromatik, resin dan asfaltena). Sebanyak 4 media pengkayaan dan 5 media pengasingan diformulasikan berdasarkan komposisi pembezaan pada mikro dan makro nutrien. Hasilnya, sebanyak 92 sampel pencilan berjaya diasingkan. Sampel pencilan tertinggi adalah pada sampel media B (minyak mentah yang mempunyai natrium laktat digunakan sebagai sumber karbon) dan media I (agar bernutrien dengan kepekatan 2 kali ganda) masing-masing dengan 37 dan 33% pencilan. Melalui medium ini juga, terdapat pelbagai jenis bakteria asli daripada takungan minyak boleh diasingkan kerana bakteria ini mampu mendegradasikan SARA daripada minyak mentah. Hasil menunjukkan sampel pencilan ABG2-7 memiliki kemampuan yang terbaik dalam mendegradasi SARA. Jumlah inokulum paling optimum daripada pencilan ABG2-7 yang digunakan untuk mendegradasi pecahan berat minyak mentah adalah sebanyak 15%, sekaligus berpotensi sebagai bakteria yang boleh digunakan untuk aplikasi MEOR.

 

Kata kunci: Kepelbagaian bakteria; media perkayaan; media pengasingan; MEOR

 

REFERENCES

 

Aditiawati, P. & Kamarisima, K. 2015. Isolation of asphaltene-degrading bacteria from sludge oil. Makara Journal of Science19(1): 13-20.

Amann, R.I., Ludwig, W. & Schleifer, K.H. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiology Reviews 59(1): 143-169.

Ariadji, T., Astuti, D.I., Aditiawati, P., Purwasena, I.A., Persada, G.P., Soeparmono, M.R., Amirudin, N.H., Ananggadipa, A.A., Sasongko, S.Y., Abqory, M.H., Ardianto, R.N., Subiantoro, E. & Aditya, G.H. 2017. Microbial huff and puff project at Mangunjaya field wells: The first in Indonesia towards successful MEOR implementation. In SPE/IATMI Asia Pacific Oil & Gas Conference and Exhibition. Jakarta, Indonesia. 

Aske, N., Kallevik, H. & Sjöblom, J. 2001. Determination of saturate, aromatic, resin, and asphaltenic (SARA) components in crude oils by means of infrared and near-infrared spectroscopy. Energy & Fuels 15(5): 1304-1312.

Astuti, D.I., Purwasena, I.A., Aditiawati, P., Sani, I., Ariadji, T. & Abqory, M. 2017. Potential degradation of SARA (saturated, aromatics, resinics, asphaltenes) fractions of crude oil by reservoir indigenous bacteria from South Sumatera. Microbiology Indonesia 11(4): 137-146.

Benedek, T., Máthé, I., Táncsics, A., Lányi, S. & Márialigeti, K. 2010. Investigation of hydrocarbon-degrading microbial communities of petroleum hydrocarbon contaminated soils in Harghita county, Romania. Scientific Bulletin Series D: Mining, Mineral Processing, Non-Ferrous Metallurgy, Geology and Environmental Engineering 24(2): 15.

Das, N. & Chandran, P. 2011. Microbial degradation of petroleum hydrocarbon contaminants: An overview. Biotechnology Research International 2011: Article ID. 941810.

Davidova, I.A. & Suflita, J.M. 2005. Enrichment and isolation of anaerobic hydrocarbon-degrading bacteria. Methods in Enzymology 397: 17-34.

Davidova, I., Hicks, M.S., Fedorak, P.M. & Suflita, J.M. 2001. The influence of nitrate on microbial processes in oil industry production waters. Journal of Industrial Microbiology and Biotechnology 27(2): 80-86.

Gailiūtė, I., Račkauskienė, G. & Grigiškis, S. 2014. Changes in crude oil hydrocarbon composition during biodegradation by Arthrobacter sp. M1 and Acinetobacter sp. Pr82 in selected optimal conditions. Biologija 60(3): 134-141.

Ghribi, D., Zouari, N. & Jaoua, S. 2004. Improvement of bioinsecticides production through mutagenesis of Bacillus thuringiensis by uv and nitrous acid affecting metabolic pathways and/or delta - endotoxin synthesis. Journal of Applied Microbiology 97(2): 338-346.

Halim, A.Y., Fauzi, U.D., Siregar, S., Soewono, E., Gunawan, A.Y., Astuti, D.I. & Juli, N. 2009. Microbial enhanced oil recovery: An investigation of bacteria ability to live and alter crude oil physical characteristics in high pressure condition. In Asia Pacific Oil and Gas Conference & Exhibition. Jakarta, Indonesia. pp. 786-793.

Hedin, R.S. & Watzlaf, G.R. 1994. The effects of anoxic limestone drains on mine water chemistry. In Proceedings, 3rd International Conference on the Abatement of Acidic Drainage. Pittsburgh: U.S. Bureau of Mines. pp. 185-194.

Islas-Flores, C.A., Buenrostro-Gonzalez, E. & Lira-Galeana, C. 2005. Comparisons between open column chromatography and HPLC SARA fractionations in petroleum. Energy & Fuels 19(5): 2080-2088.

Kamagata, Y. 2015. Keys to cultivating uncultured microbes: Elaborate enrichment strategies and resuscitation of dormant cells. Microbes and Environments 30(4): 289-290.

Ke, C.Y., Lu, G.M., Li, Y.B., Sun, W.J., Zhang, Q.Z. & Zhang, X.L. 2018. A pilot study on large-scale microbial enhanced oil recovery (MEOR) in Baolige Oilfield. International Biodeterioration & Biodegradation 127: 247-253.

Kemp, P.F. & Aller, J.Y. 2004. Bacterial diversity in aquatic and other environments: What 16S rDNA libraries can tell us. FEMS Microbiology Ecology 47(2): 161-177.

Lacy, R.C. 1987. Loss of genetic diversity from managed populations: Interacting effects of drift, mutation, immigration, selection, and population subdivision. Conservation Biology 1(2): 143-158.

Madigan, M.T., Martinko, J.M., Bender, K.S., Buckley, D.H. & Stahl, D.A. 2015. Brock Biology of Microorganisms. 14th Ed. Boston: Pearson.

Maliji, D., Olama, Z. & Holail, H. 2013. Environmental studies on the microbial degradation of oil hydrocarbons and its application in Lebanese oil polluted coastal and marine ecosystem. International Journal of Current Microbiology and Applied Science 2(6): 1-18.

Mandri, T. & Lin, J. 2007. Isolation and characterization of engine oil degrading indigenous microrganisms in Kwazulu-Natal, South Africa. African Journal of Biotechnology 6(1): 23-27.

Ollivier, B. & Cayol, J.L. 2005. The fermentative, iron-reducing, and nitrate-reducing microorganisms. In Petroleum Microbiology, edited by Ollivier, B. & Magot, M. Washington DC: ASM Press. pp. 71-88.

Purwasena, I.A., Sugai, Y. & Sasaki, K. 2014. Petrotoga japonica sp. nov., a thermophilic, fermentative bacterium isolated from Yabase Oilfield in Japan. Archives of Microbiology 196(5): 313-321.

Purwasena, I.A., Sugai, Y. & Sasaki, K. 2009. Estimation of the potential of an oil-viscosity-reducing bacteria, Petrotoga sp., isolated from an oilfield for meor. In International Petroleum Technology Conference Proceeding (IPTC), 2009. Doha, Qatar.

Riss, T.L., Moravec, R.A., Niles, A.L., Duellman, S., Benink, H.A., Worzella, T.J. & Minor, L. 2016. Cell viability assays. In Assay Guidance Manual. Bethesda, MD, USA: Eli Lilly & Company.

Röling, W.F.M., Head, I.M. & Larter, S.R. 2003. The microbiology of hydrocarbon degradation in subsurface petroleum reservoirs: perspectives and prospects. Research in Microbiology 154(5): 321-328.

Santos, R.G., Loh, W., Bannwart, A.C. & Trevisan, O.V. 2014. An overview of heavy oil properties and its recovery and transportation methods. Brazilian Journal of Chemical Engineering 31(3): 571-590.

Sarkar, J., Kazy, S.K., Gupta, A., Dutta, A., Mohapatra, B., Roy, A. & Sar, P. 2016. Biostimulation of indigenous microbial community for bioremediation of petroleum refinery sludge. Frontiers in Microbiology 7: 1407.

Shibulal, B., Al-Bahry, S.N., Al-Wahaibi, Y.M., Elshafie, A.E., Al-Bemani, A.S. & Joshi, S.J. 2018. Microbial-enhanced heavy oil recovery under laboratory conditions by Bacillus firmus BG4 and Bacillus halodurans BG5 isolated from heavy oil fields. Colloids and Interfaces 2(1): 1.

Sierra-Garcia, I.N. & de Oliveira, V.M. 2013. Microbial hydrocarbon degradation: Efforts to understand biodegradation in petroleum reservoirs. Biodegradation-Engineering and Technology. doi.org/10.5772/55920.

Spini, G., Spina, F., Poli, A., Blieux, A.L., Regnier, T., Gramellini, C., Varese, G.C. & Puglisi, E. 2018. Molecular and microbiological insights on the enrichment procedures for the isolation of petroleum degrading bacteria and fungi. Frontiers in Microbiology 9: 2543.

Xu, X., Liu, W., Tian, S., Wang, W., Qi, Q., Jiang, P., Gao, X., Li, F., Li, H. & Yu, H. 2018. Petroleum hydrocarbon-degrading bacteria for the remediation of oil pollution under aerobic conditions: A perspective analysis. Frontiers in Microbiology 9: 2885.

Yernazarova, A., Kayirmanova, G., Baubekova, A. & Zhubanova, A. 2016. Microbial enhanced oil recovery. In Chemical Enhanced Oil Recovery (cEOR) - A Practical Overview. InTech. pp. 147-167.

 

*Corresponding author; email: isty@sith.itb.ac.id

   

 

 

previous