Sains Malaysiana 49(9)(2020): 2211-2219

http://dx.doi.org/10.17576/jsm-2020-4909-18

 

Crushing Behaviour of Plain Weave Composite Hexagonal Cellular Structure

(Sifat Penghancuran Struktur Sel Heksagon Komposit Tenun Biasa)

 

M.F.M. ALKBIR1*, FATIHHI JANUDDI1, ADNAN BAKI1, S.M. SAPUAN2, M.S.E. KOSNAN1, S.B. MOHAMED3, M.S. HAMUODA4 & A. ENDUT3

 

1Facilities Maintenance Engineering, UniKL Malaysian Institute of Industrial Technology (MITEC), Persiaran Sinaran Ilmu, Bandar Seri Alam, 81750 Masai, Johor Darul Takzim, Malaysia

 

2Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor Darul Ehsan, Malaysia

 

3Faculty of Innovative Design and Technology, Universiti Sultan Zainal Abidin (UniSZA), 21300 Kuala Terengganu, Terengganu Darul Iman, Malaysia

 

4Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, P.O. Box 2713, Doha, Qatar

 

Received: 15 October 2019/Accepted: 15 May 2020

 

ABSTRACT

The tradition of fibre composite materials in energy absorbing tube applications has gained interest in structural collisions in the composite materials industry. Thus, the subject of this work is the experimental investigation to understand the effects of the failure initiator at the specimen’s edge, causing the increase in the specific absorbed energy (SEA), as well as the influence of the cellular structure composed of cells with small hexagonal angle exhibited high energy absorption capability. An extensive experimental investigation of an in plane crashing behavior of the composite hexagonal cellular structure between platen has been carried out. The cellular structure composed of hexagonal cells with angles varying between 45 and 60°. The materials used to accomplish the study are the plain weave E-glass fabric as a reinforcement and the epoxy resin system as a matrix. Furthermore, the specific energy absorption increases as the hexagonal angle increases.

 

Keywords: Composite; crushing behavior; hexagonal cellular structure; plain weave

 

ABSTRAK

Penggunaan bahan komposit fiber secara tradisi dalam tiub penyerapan tenaga telah mendapat perhatian dalam pelanggaran struktur dalam industri bahan komposit. Oleh itu, subjek kajian ini adalah untuk mengkaji kesan kegagalan pemula pada tepi spesimen, menyebabkan peningkatan pada penyerapan tenaga tertentu (SEA) dan juga pengaruh daripada struktur sel yang terdiri daripada sel dengan sudut heksagon kecil menunjukkan keupayaan penyerapan tenaga yang tinggi. Kajian menyeluruh berkenaan sifat penghancuran satah daripada struktur komposit sel heksagon telah dijalankan. Struktur sel terdiri daripada sel heksagon dengan sudut berubah antara 45 dan 60°. Bahan yang digunakan untuk melengkapkan kajian ini adalah fabrik E-kaca tenun biasa sebagai bahan diperkuat dan sistem resin epoksi sebagai matriks. Selain itu, penyerapan tenaga tertentu meningkat apabila sudut heksagon meningkat.

 

Kata kunci: Komposit; sifat penghancuran; struktur sel heksagon; tenun biasa

 

REFERENCES

Abdewi, E.F., Sulaiman, S., Hamouda, A.M.S. & Mahdi, E. 2006. Effect of geometry on the crushing behaviour of laminated corrugated composite tubes. Journal of Materials Processing Technology 172(3): 394-399.

Alkbir, M.F.A. & Ishak, M.R. 2016a. Lateral crushing properties of non-woven kenaf (mat)-reinforced epoxy composite hexagonal tubes. International Journal of Precision Engineering and Manufacturing 17(7): 965-972.

Alkbir, M.F.M., Sapuan, S.M., Nuraini, A.A. & Ishak, M.R. 2016b. The effect of fiber content on the crashworthiness parameters of natural kenaf fiber-reinforced hexagonal composite tubes. Journal of Engineered Fibers and Fabrics 11(1): 75-86.

Bergmann, T., Heimbs, S. & Maier, M. 2015. Mechanical properties and energy absorption capability of woven fabric composites under±45 off-axis tension. Composite Structures 125: 362-373.

Eshkoor, R.A., Oshkovr, S.A., Sulong, A.B., Zulkifli, R., Ariffin, A.K. & Azhari, C.H. 2013. Effect of trigger configuration on the crashworthiness characteristics of natural silk epoxy composite tubes. Composite Part B: Engineering 55(1): 5-10.

Esnaola, A., Ulacia, I., Aretxabaleta, L., Aurrekoetxea, J. & Gallego, I.  2015. Quasi-static crush energy absorption capability of E-glass/polyester and hybrid E-glass-basalt/polyester composite structures. Materials & Design 76: 18-25.

Elgalai, A.M., Mahdi, E., Hamouda, A.M.S. & Sahari, B.S. 2004. Crushing response of composite corrugated tubes to quasi-static axial loading. Composite Structures 66(1-4): 665-671.

Kalhor, R. & Case, S.W. 2015. The effect of FRP thickness on energy absorption of metal-FRP square tubes subjected to axial compressive loading. Composite Structures 130: 44-50.

Luo, H., Yan, Y., Meng, X. & Jin, C. 2016. Progressive failure analysis and energy-absorbing experiment of composite tubes under axial dynamic impact. Composite Part B: Engineering 87: 1-11.

Ma, Y., Sugahara, T., Yang, Y. & Hamada, H. 2015. A study on the energy absorption properties of carbon/aramid fiber filament winding composite tube. Composite Structures 123: 301-311.

Misri, S., Sapuan, S.M., Leman, Z. & Ishak, M.R. 2015. Torsional behaviour of filament wound kenaf yarn fibre reinforced unsaturated polyester composite hollow shafts. Materials & Design 65: 953-960.

Oshkovr, S.A., Eshkoor, R.A., Taher, S.T., Ariffin, A.K. & Azhari, C.H. 2012. Crashworthiness characteristics investigation of silk/epoxy composite square tubes. Composite Structures 94(8): 2337-2342.

Othman, A., Abdullah, S., Ariffin, A.K. & Mohamed, N.A.N. 2014. Investigating the quasi-static axial crushing behavior of polymeric foam-filled composite pultrusion square tubes. Materials & Design 63: 446-459.

Siromani, D., Henderson, G., Mikita, D., Mirarchi, K., Park, R., Smolko, J., Awerbuch, J. & Tan, T.M. 2014. An experimental study on the effect of failure trigger mechanisms on the energy absorption capability of CFRP tubes under axial compression. Composites Part A: Applied Science and Manufacturing 64: 25-35.

Tarlochan, F., Ramesh, S. & Harpreet, S. 2012. Advanced composite sandwich structure design for energy absorption applications: Blast protection and crashworthiness. Composite Part B: Engineering 43(5): 2198-2208.

Wang, L., Liu, W., Fang, Y., Wan, L. & Huo, R. 2016. Axial crush behavior and energy absorption capability of foam-filled GFRP tubes manufactured through vacuum assisted resin infusion process. Thin-Walled Structures 98: 263-273.

Xu, J., Ma, Y., Zhang, Q., Sugahara, T., Yang, Y. & Hamada, H. 2016. Crashworthiness of carbon fiber hybrid composite tubes molded by filament winding. Composite Structures 139: 130-140.

Yan, L., Chouw, N. & Jayaraman, K. 2014a. Effect of triggering and polyurethane foam-filler on axial crushing of natural flax/epoxy composite tubes. Materials & Design 56: 528-541.

Yan, L., Chouw, N. & Jayaraman, K. 2014b. Lateral crushing of empty and polyurethane-foam filled natural flax fabric reinforced epoxy composite tubes. Composite Part B: Engineering 63: 15-26.

 

*Corresponding author; email: munir@unikl.edu.my

 

 

 

 

previous