Sains Malaysiana 50(3)(2021): 839-847

http://doi.org/10.17576/jsm-2021-5003-24

 

Influence of the Oil Phase on the Wound Healing Activity of Sea Cucumber Extract-Based Cream Formulations

(Pengaruh Fasa Minyak pada Aktiviti Penyembuhan Luka oleh Formulasi Krim yang Berasaskan Ekstrak Timun Laut)

 

THIVIYA SUNMUGAM, HANISAH AZHARI, NG SHIOW-FERN & FAZREN AZMI*

 

Centre for Drug Delivery Research, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Federal Territory, Malaysia

 

Received: 17 June 2020/Accepted: 16 August 2020

 

ABSTRACT

Sea cucumbers are attractive marine natural sources as they are enriched with functional biomaterials that can contribute in accelerating wound healing. The present study was carried out to prepare cream formulations comprising extract of sea cucumber with different type of oil phase, namely F1 (olive oil), F2 (tea tree oil) and F3 (lemongrass oil) to assess the influence of the oil on the physicochemical properties and the wound healing efficacy of the creams. The formulated creams showed satisfactory physicochemical characteristics such as homogeneity, spreadability, rheology, pH, and showed no evidence of phase separation even when the creams were kept at extreme conditions. The ex vivo release profile of sea cucumber extract from the formulated creams was determined by using a Franz diffusion cells. F3 demonstrated a constant and yield the highest release percentage of sea cucumber extract, followed by F2 and F1. Topical application of the formulated creams on the excision wound in rats showed a significant wound healing efficacy compared to the control group. Among the creams formulation, F1 demonstrated a significantly higher rate of wound closure compared to F2, F3, and positive control. The wound healing efficacy of the formulated creams were not dependent on the ability of the oils in promoting skin permeation for the release of sea cucumber extract. This study depicted that lemongrass oil acted as a good skin permeation enhancer for the release of sea cucumber extract while olive oil worked in a more synergistic manner with sea cucumber extract in promoting wound healing.

 

Keywords: Oil phase; permeation enhancer; sea cucumber extract; wound healing

 

ABSTRAK

Timun laut adalah sumber semula jadi laut yang menarik kerana ia diperkaya dengan biobahan yang mampu berfungsi untuk merangsang proses penyembuhan luka. Kajian yang dijalankan merangkumi formulasi krim yang mengandungi ekstrak timun laut dengan pelbagai jenis fasa minyak, iaitu FI (minyak zaitun), F2 (minyak pohon teh)
dan F3 (minyak serai) untuk mengkaji pengaruh jenis minyak pada sifat fizikokimia dan keberkesanan penyembuhan luka. Kesemua krim yang diformulasikan menunjukkan ciri-ciri fizikokimia yang memuaskan seperti             kehomogenan, daya sebaran, reologi, pH dan tidak menunjukkan bukti pemisahan fasa walaupun krim disimpan dalam keadaan suhu yang melampau. Profil pelepasan
ex vivo ekstrak timun laut daripada krim yang dirumuskan telah dinilai menggunakan sel resapan Franz. F3 menunjukkan kadar pelepasan ekstrak timun laut yang sekata dan perstusan tertinggi, diikuti oleh F2 dan F1. Aplikasi kesemua krim secara topikal pada pemotongan luka menunjukkan keberkesanan penyembuhan luka yang signifikan berbanding kumpulan kawalan. Di antara krim yang dirumus, F1 menunjukkan kadar penyembuhan luka yang lebih tinggi berbanding F2, F3 dan kawalan positif. Keberkesanan penyembuhan luka daripada krim yang dirumuskan tidak bergantung pada kemampuan minyak dalam mempromosikan permeasi kulit untuk pembebasan ekstrak timun laut. Kajian ini merumuskan bahawa minyak serai bertindak sebagai agen permeasi kulit yang berkesan untuk pembebasan ekstrak timun laut sementara minyak zaitun berfungsi dengan cara yang lebih sinergistik dengan ekstrak timun laut dalam merangsang penyembuhan luka.

 

Kata kunci: Agen permeasi; ekstrak timun laut; fasa minyak; penyembuhan luka

 

REFERENCES

Aqil, M., Ahad, A., Sultana, Y. & Ali, A. 2007. Status of terpenes as skin penetration enhancers. Drug Discov. Today 12(23-24): 1061-1067. doi: 10.1016/j.drudis.2007.09.001.

Cai, Y., Yang, W., Yin, R., Zhou, L., Li, Z., Wu, M. & Zhao, J. 2018. An anticoagulant fucan sulfate with hexasaccharide repeating units from the sea cucumber Holothuria albiventer. Carbohydr. Res. 464: 12-18. doi: 10.1016/j.carres.2018.05.007.

Carson, C.F., Hammer, K.A. & Riley, T.V. 2006. Melaleuca alternifolia (Tea Tree) oil: A review of antimicrobial and other medicinal properties. Clin. Microbiol. Rev. 19(1): 50-62. doi: 10.1128/CMR.19.1.50-62.2006.

Chen, J., Jiang, Q.D., Chai, Y.P., Zhang, H., Peng, P. & Yang, X.X. 2016. Natural terpenes as penetration enhancers for transdermal drug delivery. Molecules 21(12): 1709. doi: 10.3390/molecules21121709.

Chikakane, K. & Takahashi, H. 1995. Measurement of skin pH and its significance in cutaneous diseases. Clin. Dermatol. 13(4): 299-306.

Donato-Trancoso, A., Monte-Alto-Costa, A. & Romana-Souza, B. 2016. Olive oil-induced reduction of oxidative damage and inflammation promotes wound healing of pressure ulcers in mice. J. Dermatol. Sci. 83(1): 60-69. doi: 10.1016/j.jdermsci.2016.03.012.

Gouvinhas, I., Machado, N., Sobreira, C., Domínguez-Perles, R., Gomes, S., Rosa, E. & Barros, A.I. 2017. Critical review on the significance of olive phytochemicals in plant physiology and human health. Molecules 22(11): 1986. doi: 10.3390/molecules22111986.

Herman, A. & Herman, A.P. 2015. Essential oils and their constituents as skin penetration enhancer for transdermal drug delivery: A review. J. Pharm. Pharmacol. 67(4): 473-485. doi: 10.1111/jphp.12334.

Himaya, S.W.A., Ryu, B., Qian, Z.J. & Kim, S.K. 2010. Sea cucumber, Stichopus japonicus ethyl acetate fraction modulates the lipopolysaccharide induced iNOS and COX-2 via MAPK signaling pathway in murine macrophages. Environ. Toxicol. Pharmacol. 30(1): 68-75. doi: 10.1016/j.etap.2010.03.019.

Kwak, M.S., Ahn, H.J. & Song, K.W. 2015. Rheological investigation of body cream and body lotion in actual application conditions. Korea Aust. Rheol. J. 27(3): 241-251. doi: 10.1007/s13367-015-0024-x.

Lambers, H., Piessens, S., Bloem, A., Pronk, H. & Finkel, P. 2006. Natural skin surface pH is on average below 5, which is beneficial for its resident flora. Int. J. Cosmet. Sci. 28(5): 359-370. doi: 10.1111/j.1467-2494.2006.00344.x.

Mamelona, J., Pelletier, E., Girard-Lalancette, K., Legault, J., Karboune, S. & Kermasha, S. 2007. Quantification of phenolic contents and antioxidant capacity of Atlantic sea cucumber, Cucumaria frondosa. Food Chemistry 104(3): 1040-1047. doi: https://doi.org/10.1016/j.foodchem.2007.01.016.

Martin, P. & Nunan, R. 2015. Cellular and molecular mechanisms of repair in acute and chronic wound healing. Br. J. Dermatol. 173(2): 370-378. doi: 10.1111/bjd.13954.

Matousek, J.L., Campbell, K.L., Kakoma, I., Solter, P.F. & Schaeffer, D.J. 2003. Evaluation of the effect of pH on in vitro growth of Malassezia pachydermatis. Can. J. Vet. Res. No. 67(1): 56-59.

Nanayakkara, G.R., Bartlett, A., Forbes, B., Marriott, C., Whitfield, P.J. & Brown, M.B. 2005. The effect of unsaturated fatty acids in benzyl alcohol on the percutaneous permeation of three model penetrants. Int. J. Pharm. 301(1-2): 129-139. doi: 10.1016/j.ijpharm.2005.05.024.

Narishetty, S.T.K. & Panchagnula, R. 2004. Transdermal delivery of zidovudine: Effect of terpenes and their mechanism of action. J. Control Release 95(3): 367-379. doi: 10.1016/j.jconrel.2003.11.022.

Oh, G.W., Ko, S.C., Lee, D.H., Heo, S.J. & Jung, W.K. 2017. Biological activities and biomedical potential of sea cucumber (Stichopus japonicus): A review. Fish Aquatic Sci. 20: 1-17. doi: 10.1186/s41240-017-0071-y.

Omran, N.E. & Allam, N.G. 2013. Screening of microbial contamination and antimicrobial activity of sea cucumber Holothuria polii. Toxicol. Ind. Health 29(10): 944-954. doi: 10.1177/0748233712448116.

Pessoa, A.F.M., Florim, J.C., Rodrigues, H.G., Andrade-Oliveira, V., Teixeira, S.A., Vitzel, K.F., Curi, R., Saraiva Camara, N.O., Muscará, M.N., Lamers, M.L. & Santos, M.F.. 2016. Oral administration of antioxidants improves skin wound healing in diabetic mice. Wound Repair Regen. 24(6): 981-993. doi: 10.1111/wrr.12486.

Pham, Q.D., Björklund, S., Engblom, J., Topgaard, D. & Sparr, E. 2016. Chemical penetration enhancers in stratum corneum - Relation between molecular effects and barrier function. J. Control Release 232: 175-187. doi: 10.1016/j.jconrel.2016.04.030.

Rivera, A.E. & Spencer, J.M. 2007. Clinical aspects of full-thickness wound healing. Clin. Dermatol. 25(1): 39-48. doi: 10.1016/j.clindermatol.2006.10.001.

Süntar, I., Akkol, E.K., Nahar, L. & Sarker, S.D. 2012. Wound healing and antioxidant properties: Do they coexist in plants? Free Radicals and Antioxidants 2(2): 1-7. doi: https://doi.org/10.5530/ax.2012.2.2.1.

Takeuchi, H., Mano, Y., Terasaka, S., Sakurai, T., Furuya, A., Urano, H. & Sugibayashi, K. 2011. Usefulness of rat skin as a substitute for human skin in the in vitro skin permeation study. Exp. Anim. 60(4): 373-384. doi: 10.1538/expanim.60.373.

Viljoen, J.M., Cowley, A., Du Preez, J., Gerber, M. & Du Plessis, J. 2015. Penetration enhancing effects of selected natural oils utilized in topical dosage forms. Drug Dev. Ind. Pharm. 41(12): 2045-2054. doi: 10.3109/03639045.2015.1047847.

Zhang, Y., Yang, N., Xu, Y., Wang, Q., Huang, P., Nishinari, K. & Fang, Y. 2019. Improving the stability of oil body emulsions from diverse plant seeds using sodium alginate. Molecules 24(21): 3856. doi: 10.3390/molecules24213856.

 

*Corresponding author; email: mfazren.azmi@ukm.edu.my

 

       

 

previous