Sains Malaysiana 50(5)(2021): 1267-1275

http://doi.org/10.17576/jsm-2021-5005-07

 

Biocontrol Potential of Neem Leaf-Based Vermicompost as Indicated by Chitinase, Protease and β-1,3-Glucanase Activity

(Potensi Biokawalan Vermikompos Berasaskan Daun Semambu seperti yang Ditunjukkan oleh Aktiviti Kitinase, Protease dan β-1,3-Glucanase)

 

LOH KHYE ER1, NOR AZWADY ABDUL AZIZ2*, MUSKHAZLI MUSTAFA2 & INTAN SAFINAR ISMAIL3

 

1Department of Bioscience, Faculty of Applied Sciences, Tunku Abdul Rahman University College, Jalan Genting Kelang Setapak, 53300 Kuala Lumpur, Federal Territory, Malaysia

 

2Department of Biology, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia

 

3Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia

 

Received: 20 May 2020/Accepted: 7 October 2020

 

ABSTRACT

The rising concern regarding the negative impact of synthetic pesticides has led to the search for alternative means of pest control. Vermicomposting the mixture of oil palm empty fruit bunch and neem (Azadirachta indica) leaves, with the latter known to have pesticidal value, is therefore of great interest and significance to be studied. The present study was conducted to evaluate the chitinase, protease and β-1,3-glucanase activity of neem leaf-based vermicompost as an indication of its biocontrol properties. The total microbial population of different composition of the vermicompost was also investigated. The results showed that at 10% neem composition, an increment in microbial population, chitinase and protease activities was observed in the end product. A higher concentration of neem exerted a suppressive effect on the microbial population as well as enzymatic activity. This study suggested that the addition of an appropriate composition of neem leaves as one of the raw materials for vermicomposting would potentially enhance the performance of vermicompost as biofertilizer as well as biopesticide.

 

Keywords: Biopesticide; chitinase; neem leaf; protease; β-1,3-glucanase

 

ABSTRAK

Kebimbangan yang semakin meningkat mengenai kesan negatif racun perosak sintetik telah menyebabkan pencarian kaedah alternatif kawalan perosak. Oleh itu, pengkomposan campuran tandan buah kosong kelapa sawit dan daun semambu (Azadirachta indica) yang diketahui mempunyai nilai racun perosak telah menarik perhatian dan lebih bermakna untuk dikaji. Kajian ini dilakukan untuk menilai aktiviti kitinase, protease dan β-1,3-glukanase vermikompos yang berasaskan daun semambu sebagai petunjuk sifat biokawalannya. Jumlah populasi mikroorganisma bagi vermikompos yang berbeza daripada segi komposisinya juga telah dikaji. Hasil kajian menunjukkan peningkatan populasi mikroorganisma, aktiviti kitinase dan protease pada produk akhir yang mempunyai 10% daun semambu. Kepekatan semambu yang lebih tinggi memberi kesan penindasan terhadap populasi mikroorganisma dan juga aktiviti enzim. Kajian ini mencadangkan bahawa penambahan komposisi daun semambu yang sesuai sebagai salah satu bahan mentah untuk pengkomposan berpotensi meningkatkan prestasi vermikompos sebagai baja dan racun perosak biologi.

 

Kata kunci: Daun semambu; kitinase; protease; racun perosak biologi; β-1,3-glukanase

 

REFERENCES

Aira, M., Monroy, F. & Dominguez, J. 2006. Eisenia fetida (Oligochaeta, Lumbricidae) activates fungal growth, triggering cellulose decomposition during vermicomposting. Microbial Ecology 52(4): 738-747.

Akel, H., Al-Quadan, F. & Yousef, T.K. 2009. Characterization of a purified thermostable           protease from hyperthermophilic Bacillus strain HUTBS71. European Journal of Scientific Research 31(2): 280-288.

Benitez, E., Sainz, H., Melgar, R. & Nogales, R. 2002. Vermicomposting of a lignocellulosic waste from olive oil industry: A pilot scale study. Waste Manage & Research 20(2): 134-142.

Chae, D.H., Jin, R.D., Hwangbo, H., Kim, Y.W., Kim, Y.C., Park, R.D., Krishnan, H.B. & Kim, K.Y. 2006. Control of late blight (Phytophthora capsici) in pepper plant with a compost containing multitude of chitinase-producing bacteria. BioControl 51: 339-351.

Chaudhary, S., Kanwar, R.K., Sehgal, A., Cahill, D.M., Barrow, C.J., Sehgal, R. & Kanwar, J.R. 2017. Progress on Azadirachta indica based biopesticides in replacing synthetic toxic pesticides. Frontiers in Plant Science 8: 610.

Coventry, E. & Allan, E.J. 2001. Microbial and chemical analysis of neem (Azadirachta indica): Notes on antimicrobial activity. Phytoparasitica 29: 441-450.

Devi, S.H., Vijayalakshmi, K., Jyotsna, K.P., Shaheen, S.K., Jyothi, K. & Rani, M.S. 2009. Comparative assessment in enzyme activities and microbial populations during normal and vermicomposting. Journal of Environmental Biology 30(6): 1013-1017.

Gajalakshmi, S. & Abbasi, S.A. 2004. Neem leaves as a source of fertilizer-cum-pesticide vermicompost. Bioresource Technology 92(3): 291-296.

Garcia, C., Hernandez, T., Costa, F. & Ceccanti, B. 1994. Biochemical parameters in soils regenerated by addition of organic wastes. Waste Management & Research 12(6): 457-466.

Gopal, M., Gupta, A., Arunachalam, V. & Magu, S.P. 2007. Impact of azadirachtin, an insecticidal allelochemical from neem on soil microflora, enzyme and respiratory activities. Bioresource Technology 98(16): 3154-3158.

Govindachari, T.R., Suresh, G., Geetha Gopalakrishnan, Masilamani, S. & Banumathi, B. 2000. Antifungal activity of some tetratriterpenoids. Fitoterapia 71(3): 317-320.

Herigstad, B., Hamilton, M. & Heersink, J. 2001. How to optimize the drop plate method for enumerating bacteria. Journal of Microbiological Methods 44(2): 121-129.

Jadhav, H.P. & Sayyed, R.Z. 2016. Hydrolytic enzymes of rhizospheric microbes in crop protection. MedCrave Online Journal of Cell Science & Report 3(5): 135-136.

Kiyasudeen, K., Jessy, S.R.S. & Ibrahim, M.H. 2014. Earthworm's gut as reactor in vermicomposting process: A mini review. International Journal of Scientific and Research Publications 4(7): 1-6.

Ladd, J.N. & Butler, J.H. 1972. Short-term assays of soil proteolytic enzyme activities using proteins and dipeptide derivitives as substrates. Soil Biology and Biochemistry 4(1): 19-30.

Lazcano, C., Gomez-Brandon, M. & Dominguez, J. 2008. Comparison of the effectiveness of composting and vermicomposting for the biological stabilization of cattle manure. Chemosphere 72(7): 1013-1019.

Loh, K.E., Aziz, N.A.A., Kok, H.Y., Mustafa, M., Ismail, I.S. & Zainudin, N.A.I.M. 2012. Potential of neem leaf-empty fruit bunch-based vermicompost as biofertiliser-cum-biopesticide: Chemical properties, humic acid content and enzymes (protease and phosphatase) activity in vermicompost (Part I). Scientific Research and Essays 7(42): 3657-3664.

Lokanadhan, S., Muthukrishnan, P. & Jeyaraman, S. 2012. Neem products and their agricultural applications. Journal of Biopesticides 5(Supplementary): 72-76.

Macci, C., Masciandaro, G. & Ceccanti, B. 2010. Vermicomposting of olive oil mill wastewaters. Waste Management & Research 28(8): 738-747.

Mistry, J., Mukhopadhyay, A.P. & Baur, G.N. 2015. Status of N P K in vermicompost prepared from two common weed and two medicinal plants. International Journal of Applied Sciences and Biotechnology 3(2): 193-196.

Padmavathiamma, P.K., Loretta, Y.L. & Kumari, U.R. 2008. An experimental study of vermi-biowaste composting for agriculture soil improvement. Bioresource Technology 99(6): 1672-1681.

Palta, R.K. & Bhatnagar, R.K. 2007. Vermiculture: A technology to manage solid wastes. In Earthworms for Solid Waste Management, edited by Singh, S.M. India, International Book Distributing Co. pp. 17-50.

Pathma, J. & Sakthivel, N. 2012. Microbial diversity of vermicompost bacteria that exhibit useful agricultural traits and waste management potential. Springerplus 1: 26.

Pitson, S.M., Seviour, R.J. & Mcdougall, B.M. 1996. Proteolytic inactivation of an extracellular (1🡪3)-β-glucanase from the fungus Acremonium persicinum is associated with growth at neutral or alkaline medium pH. FEMS Microbiology Letters 145(2): 287-293.

Poulsen, P.H.B., Moller, J. & Magid, J. 2008. Determination of a relationship between chitinase activity and microbial diversity in chitin amended compost. Bioresource Technology 99(10): 4355-4359.

Uz, I. & Tavali, I.E. 2014. Short-term effect of vermicompost application on biological properties of an alkaline soil with high lime content from Mediterranean region of Turkey. The Scientific World Journal 2014: 1-11.

Vivas, A., Moreno, B., Garcia-Rodiguez, S. & Benitez, E. 2009. Assessing the impact of composting and vermicomposting on bacterial community size and structure, and microbial functional diversity of an olive-mill waste. Bioresource Technology 100(3): 1319-1326.

Yardim, E.N. & Edwards, C.N. 2003. Effects of organic and synthetic fertilizer sources on pest and predatory insects associated with tomatoes. Phytoparasitica 31(4): 324-329.

Yasir, M., Aslam, Z., Kim, S.W., Lee, S.W., Jeon, C.O. & Chung, Y.R. 2009. Bacterial community composition and chitinase gene diversity of vermicompost with antifungal activity. Bioresource Technology 100(19): 4396-4403.

 

*Corresponding author; email: azwady@upm.edu.my

 

   

 

previous