Sains Malaysiana 50(5)(2021): 1445-1456

http://doi.org/10.17576/jsm-2021-5005-23

 

Comparison of the Antioxidant Activity of Malaysian Ginger (Zingiber officinale Roscoe) Extracts with that of Selected Natural Products and its Effect on the Viability of Myoblast Cells in Culture

(Perbandingan Aktiviti Antioksidan Halia (Zingiber officinale Roscoe) Malaysia dengan Produk Semula Jadi Terpilih dan Kesannya terhadap Kebolehidupan Sel Mioblas dalam Kultur

 

NUR FATIN NABILAH MOHD SAHARDI1, FAIZUL JAAFAR1, SITI NOR ASYIKIN ZAKARIA1, JEN KIT TAN1, MARIAM FIRDHAUS MAD NORDIN2 & SUZANA MAKPOL1*

 

1Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia

HCTM, Jalan Yaacob Latif, 56000 Cheras, Kuala Lumpur, Federal Territory, Malaysia

 

2Department of Chemical Process Engineering, Universiti Teknologi Malaysia, Kuala Lumpur, Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Federal Territory, Malaysia

 

Received: 28 July 2020/Accepted: 25 September 2020

 

ABSTRACT

Ginger has been proven to possess various therapeutic effects, including antibacterial, anticancer, anti-inflammatory, and antioxidant effects. However, data on the comparison of ginger antioxidant activity with that of other natural products are still lacking. This study aimed to analyse and compare the antioxidant properties of two types of Malaysian ginger extracts (GE1 and GE2) with that of selected natural products. The antioxidant activities were measured by 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) and ferric reducing antioxidant power (FRAP) assays, while cell viability was determined by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfonyl)-2H-tetrazolium (MTS) assay. The order of the DPPH scavenging activities was as follows: vitamin C > palm tocotrienol-rich fraction (TRF) > á-tocopherol > N-acetylcysteine (NAC) > Ficus deltoidea > butylated hydroxytoluene (BHT) > Centella asiatica > GE2 > GE1 > Moringa oleifera > Kelulut honey; the order of the mean FRAP value was as follows: NAC > á-tocopherol > BHT > TRF > Ficus deltoidea > Moringa oleifera > GE2 = GE1 > Centella asiatica > Kelulut honey. The viability assays showed that both ginger extracts significantly increased the percentage of viable cells (p < 0.05). In conclusion, neither of the ginger extracts was cytotoxic toward cells and both possessed comparable antioxidant properties, indicating their potential for ameliorating oxidative stress.

 

Keywords: Antioxidant property; gingerol; Malaysian ginger; myoblasts; shogaol

 

ABSTRAK

Halia telah terbukti mempunyai pelbagai kesan terapeutik termasuklah kesan anti-bakteria, anti-kanser, anti-radang dan antioksidan. Namun sehingga kini, perbandingan aktiviti antioksidan antara halia dengan produk semula jadi yang lain masih lagi kurang. Oleh itu, tujuan kajian ini dijalankan adalah untuk menganalisis dan membandingkan ciri-ciri antioksidan yang ada pada dua jenis ekstrak halia (GE1 dan GE2) yang ada di Malaysia dengan produk semula jadi yang lain. Aktiviti antioksidan telah diukur melalui asai 2,2-difenil-1-fikril-hidrazil-hidra (DPPH) dan asai aktiviti penurunan kuasa antioksidan ion ferik (FRAP), manakala kebolehidupan sel ditentukan melalui asai 3-(4,5-dimetiltiazol-2-yil)-5-(3-karboksimetoksifenil)-2-(4-sulfonil)-2H-tetrazolium (MTS). Susunan untuk aktiviti hapus sisa radikal bebas DPPH adalah seperti berikut: vitamin C > fraksi kaya tokotrienol (TRF) > á-tokoferol > NAC > Ficus deltoidea > BHT > Centella asiatica > GE2 > GE1 > Moringa oleifera > madu Kelulut, manakala susunan untuk aktiviti penurunan kuasa antioksidan ion ferik (FRAP) adalah seperti berikut: NAC > á-tokoferol > BHT > TRF > Ficus deltoidea > Moringa oleifera > GE2 = GE1 > Centella asiatica > madu Kelulut. Asai kebolehidupan sel menunjukkan peratus kebolehidupan sel yang dirawat dengan kedua-dua ekstrak halia meningkat secara signifikan (p < 0.05). Kesimpulannya, kedua-dua jenis ekstrak halia ini tidak memberi kesan toksik terhadap sel dan mengandungi ciri-ciri antioksidan yang berpotensi mengurangkan aras tekanan oksidatif.

 

Kata kunci: Ciri antioksidan; gingerol; halia Malaysia; mioblas; shogaol

 

REFERENCES

Abdul Qadir, M., Shahzadi, S.K., Bashir, A., Munir, A. & Shahzad, S. 2017. Evaluation of phenolic compounds and antioxidant and antimicrobial activities of some common herbs.  International Journal of Analytical Chemistry 2017: 3475738.

Abrahim, N.N., Abdul-Rahman, P.S. & Aminudin, N. 2018. The antioxidant activities, cytotoxic properties, and identification of water-soluble compounds of Ficus deltoidea leaves.  Journal of Life & Environmental Sciences 6: e5694.

Ahmad, N., Sulaiman, S., Mukti, N.A., Murad, N.A., Hamid, N.A.A. & Yusof, Y.A.M. 2006.   Effects of ginger extract (Zingiber officinale Roscoe) on antioxidant status of hepatocarcinoma induced rats. Malaysian Journal of Biochemistry and Molecular Biology 14: 7-12.

Ahmed, K., Shaheen, G. & Asif, H. 2011. Zingiber officinale Roscoe (pharmacological activity). Journal of Medicinal Plants Research 5(3): 344-348.

Al-Amin, Z.M., Thomson, M., Al-Qattan, K.K., Peltonen-Shalaby, R. & Ali, M. 2006. Anti-diabetic and hypolipidaemic properties of ginger (Zingiber officinale) in streptozotocin-induced diabetic rats.  British Journal of Nutrition 96(4): 660-666.

Ariffin, F., Heong Chew, S., Bhupinder, K., Karim, A.A. & Huda, N. 2011. Antioxidant capacity and phenolic composition of fermented Centella asiatica herbal teas.  Journal of The Science of Food and Agriculture 91(15): 2731-2739.

Chakotiya, A.S., Tanwar, A., Narula, A. & Sharma, R.K. 2017. Zingiber officinale: Its antibacterial activity on Pseudomonas aeruginosa and mode of action evaluated by flow cytometry.  Microbial Pathogenesis 107: 254-260.

Dugasani, S., Pichika, M.R., Nadarajah, V.D., Balijepalli, M.K., Tandra, S. & Korlakunta, J.N.   2010. Comparative antioxidant and anti-inflammatory effects of [6]-gingerol, [8]-gingerol, [10]-gingerol and [6]-shogaol. Journal of Ethnopharmacology 127(2): 515-520.

El-Ghorab, A.H., Nauman, M., Anjum, F.M., Hussain, S. & Nadeem, M. 2010.  A comparative study on chemical composition and antioxidant activity of ginger (Zingiber officinale) and cumin (Cuminum cyminum).  Journal of Agricultural and Food Chemistry 58(14): 8231-8237.

Ezzat, S.M., Ezzat, M.I., Okba, M.M., Menze, E.T. & Abdel-Naim, A.B. 2018. The hidden mechanism beyond ginger (Zingiber officinale Rosc.) potent in vivo and in vitro anti-inflammatory activity. Journal of Ethnopharmacology 214: 113-123.

Garcia, E.J., Oldoni, T.L.C., Alencar, S.M.D., Reis, A., Loguercio, A.D. & Grande, R.H.M. 2012. Antioxidant activity by DPPH assay of potential solutions to be applied on bleached teeth. Brazilian Dental Journal 23(1): 22-27.

Ghasemzadeh, A., Jaafar, H. & Rahmat, A. 2016. Variation of the phytochemical constituents and antioxidant activities of Zingiber officinale Var. Rubrum Theilade associated with different drying methods and polyphenol oxidase activity. Molecules 21(6): 780.

Guo, J., Wu, H., Du, L., Zhang, W. & Yang, J. 2014. Comparative antioxidant properties of some gingerols and shogaols, and the relationship of their contents with the antioxidant potencies of fresh and dried ginger (Zingiber officinale Roscoe). Journal of Agricultural Science and Technology 16: 1063-1072.

Gupta, D. 2015.  Methods for determination of antioxidant capacity: A review.  International Journal of Pharmaceutical Sciences and Research 6(2): 546-566.

Habib, S.H.M., Makpol, S., Hamid, N.A.A., Das, S., Ngah, W.Z.W. & Yusof, Y.A.M. 2008. Ginger extract (Zingiber officinale) has anti-cancer and anti-inflammatory effects on ethionine-induced hepatoma rats. Clinics 63(6): 807-813.

Ho, L.H., Ramli, N.F., Tan, T.C., Muhamad, N. & Haron, M.N. 2018. Effect of extraction solvents and drying conditions on total phenolic content and antioxidant properties of watermelon rind powder. Sains Malaysiana 47(1): 99-107.

Hussein, U.K., Hassan, N.E.H.Y., Elhalwagy, M.E., Zaki, A.R., Abubakr, H.O., Nagulapalli Venkata, K.C., Jang, K.Y. & Bishayee, A. 2017. Ginger and propolis exert neuroprotective effects against monosodium glutamate-induced neurotoxicity in rats. Molecules 22(11): 1928.

Jolad, S.D., Lantz, R.C., Solyom, A.M., Chen, G.J., Bates, R.B. & Timmermann, B.N. 2004. Fresh organically grown ginger (Zingiber officinale): Composition and effects on LPS-induced PGE2 production. Phytochemistry 65(13): 1937-1954.

Kedare, S.B. & Singh, R.P. 2011. Genesis and development of DPPH method of antioxidant assay. Journal of Food Science and Technology 48(4): 412-422.

Kishore, R.K., Halim, A.S., Syazana, M.N. & Sirajudeen, K.N.S. 2011. Tualang honey has higher phenolic content and greater radical scavenging activity compared with other honey sources. Nutrition Research 31(4): 322-325.

Kou, X., Wang, X., Ji, R., Liu, L., Qiao, Y., Lou, Z., Ma, C., Li, S., Wang, H. & Ho, C.T. 2018. Occurrence, biological activity and metabolism of 6-shogaol. Food and Function 9(3): 1310-1327.

Kulkarni, R.A. & Deshpande, A.R. 2016. Anti-inflammatory and antioxidant effect of ginger in tuberculosis. Journal of Complementary and Integrative Medicine 13(2): 201-206.

Kulsum, S., Suresh, A. & Mehta, A. 2018. Correlation of antioxidant and antiproliferative activity of amla and ginger. Asian Journal of Pharmaceutical and Clinical Research 11(8): 263-269.

Li, Y., Hong, Y., Han, Y., Wang, Y. & Xia, L. 2016. Chemical characterization and antioxidant activities comparison in fresh, dried, stir-frying and carbonized ginger. Journal of Chromatography B 1011: 223-232.

Liju, V.B., Jeena, K. & Kuttan, R. 2015. Gastroprotective activity of essential oils from turmeric and ginger. Journal of Basic and Clinical Physiology and Pharmacology 26(1): 95-103.

Mahluji, S., Ostadrahimi, A., Mobasseri, M., Attari, V.E. & Payahoo, L. 2013. Anti-inflammatory effects of Zingiber officinale in type 2 diabetic patients. Advanced Pharmaceutical Bulletin 3(2): 273-276.

Maizura, M., Aminah, A. & Wan Aida, W.M. 2011. Total phenolic content and antioxidant activity of kesum (Polygonum minus), ginger (Zingiber officinale) and turmeric (Curcuma longa) extract. International Food Research Journal 18(2): 526-531.

Meng, S.J. & Yu, L.J. 2010. Oxidative stress, molecular inflammation and sarcopenia. International Journal of Molecular Sciences 11(4): 1509-1526.

Misbah, H., Aziz, A.A. & Aminudin, N. 2013. Antidiabetic and antioxidant properties of Ficus deltoidea fruit extracts and fractions. BMC Complementary and Alternative Medicine 13(1): 118.

Mozaffari-Khosravi, H., Naderi, Z., Dehghan, A., Nadjarzadeh, A. & Fallah Huseini, H. 2016. Effect of ginger supplementation on proinflammatory cytokines in older patients with osteoarthritis: Outcomes of a randomized controlled clinical trial. Journal of Nutrition in Gerontology and Geriatrics 35(3): 209-218.

Nadeem, M., Hussain, S., El-Ghorab, A., Anjum, F. & Nauman, M. 2012. Antioxidant activity of ginger (Zingiber officinale) and cumin.  Journal of Agricultural and Food Chemistry 58: 8231-8237.

Pakade, V., Cukrowska, E. & Chimuka, L. 2013. Comparison of antioxidant activity of Moringa oleifera and selected vegetables in South Africa. South African Journal of Science 109(3-4): 1-5.

Park, M., Bae, J. & Lee, D.S. 2008. Antibacterial activity of [10] ‐gingerol and [12] ‐gingerol isolated from ginger rhizome against periodontal bacteria. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives 22(11): 1446-1449.

Pashaei-Asl, R., Pashaei-Asl, F., Gharabaghi, P.M., Khodadadi, K., Ebrahimi, M., Ebrahimie, E. & Pashaiasl, M. 2017. The inhibitory effect of ginger extract on ovarian cancer cell line; Application of systems biology. Advanced Pharmaceutical Bulletin 7(2): 241-249.

Pourreza, N. 2013. Phenolic compounds as potential antioxidant. Jundishapur Journal of Natural Pharmaceutical Products 8(4): 149-150.

Rahman, M., Hossain, S., Rahaman, A., Fatima, N., Nahar, T., Uddin, B. & Basunia, M.A. 2013. Antioxidant activity of Centella asiatica (Linn.) urban: Impact of extraction solvent polarity. Journal of Pharmacognosy and Phytochemistry 1(6): 27-32.

Ramalingam, M. & Kim, S.J. 2012. Reactive oxygen/nitrogen species and their functional correlations in neurodegenerative diseases. Journal of Neural Transmission 119(8): 891-910.

Rigane, G., Mnif, S. & Salem, R.B. 2018. One step purification of 6-shogaol from Zingiber officinale Rosco, a phenolic compound having a high effectiveness against bacterial strains.  Revue Roumaine de Chimie 63(1): 5-10.

Saha, A., Blando, J., Silver, E., Beltran, L., Sessler, J. & DiGiovanni, J. 2014. 6-Shogaol from dried ginger inhibits growth of prostate cancer cells both in vitro and in vivo through inhibition of STAT3 and NF-κB signaling. Cancer Prevention Research 7(6): 627-638.

Shimoda, H., Shan, S.J., Tanaka, J., Seki, A., Seo, J.W., Kasajima, N., Tamura, S., Ke, Y. & Murakami, N. 2010. Anti-inflammatory properties of red ginger (Zingiber officinale var. Rubra) extract and suppression of nitric oxide production by its constituents. Journal of Medicinal Food 13(1): 156-162.

Shirin-Adel, P.R. & Prakash, J. 2010. Chemical composition and antioxidant properties of ginger root (Zingiber officinale). Journal of Medicinal Plants Research 4(24): 2674-2679.

Si, W., Chen, Y.P., Zhang, J., Chen, Z.Y. & Chung, H.Y. 2018. Antioxidant activities of ginger extract and its constituents toward lipids. Food Chemistry 239: 1117-1125.

Suzuki, S., Fujita, N., Hosogane, N., Watanabe, K., Ishii, K., Toyama, Y., Takubo, K., Horiuchi, K., Miyamoto, T., Nakamura, M. & Matsumoto, M. 2015. Excessive reactive oxygen species are therapeutic targets for intervertebral disc degeneration. Arthritis Research and Therapy 17(1): 1-17.

Tan, C.M., Najib, N.A.M., Suhaimi, N.F., Halid, N.A., Cho, V.V., Abdullah, S.I., Ismail, M.Z., Khor, S.C., Jaafar, F. & Makpol, S. 2021. Modulation of Ki67 and myogenic regulatory factor expression by tocotrienol-rich fraction ameliorates myogenic program of senescent human myoblasts. Archives of Medical Science 17(3): 1-12.

Tanaka, K., Arita, M., Sakurai, H., Ono, N. & Tezuka, Y. 2015. Analysis of chemical properties of edible and medicinal ginger by metabolomics approach. Biomed Research International 2015: 671058.

Tohma, H., Gülçin, İ., Bursal, E., Gören, A.C., Alwasel, S.H. & Köksal, E. 2017. Antioxidant activity and phenolic compounds of ginger (Zingiber officinale Rosc.) determined by HPLC-MS/MS. Journal of Food Measurement and Characterization 11(2): 556-566.

Valera, M.C., Cardoso, F.G.D.R., Maekawa, L.E., Camargo, C.H.R., De Oliveira, L.D. & Carvalho, C.A.T. 2015. In vitro antimicrobial and anti-endotoxin action of Zingiber officinale as auxiliary chemical and medicament combined to calcium hydroxide and chlorhexidine. Acta Odontologica Scandinavica 73(7): 556-561.

Van Breemen, R.B., Tao, Y. & Li, W. 2011. Cyclooxygenase-2 inhibitors in ginger (Zingiber officinale). Fitoterapia 82(1): 38-43.

Wang, Y., Yu, H., Zhang, X., Feng, Q., Guo, X., Li, S., Li, R., Chu, D. & Ma, Y. 2017. Evaluation of daily ginger consumption for the prevention of chronic diseases in adults: A cross-sectional study. Nutrition 36: 79-84.

Waris, G. & Ahsan, H. 2006. Reactive oxygen species: Role in the development of cancer and various chronic conditions. Journal of Carcinogenesis 5: 14.

Wright, R.J., Lee, K.S., Hyacinth, H.I., Hibbert, J.M., Reid, M.E., Wheatley, A.O. & Asemota, H.N. 2017. An investigation of the antioxidant capacity in extracts from Moringa oleifera plants grown in Jamaica. Plants 6(48): 1-8.

Yasmin Anum, M.Y., Shahriza, Z.A., Looi, M.L., Shafina Hanim, M.H., Harlianshah, H., Noor Aini, A.H., Suzana, M. & Wan Zurinah, W.N. 2008. Ginger extract (Zingiber officinale Roscoe) triggers apoptosis in hepatocarcinogenesis induced rats. Medicinal Health 3(2008): 263-274.

 

*Corresponding author; email: suzanamakpol@ppukm.ukm.edu.my

 

 

 

previous