Sains Malaysiana 50(6)(2021): 1685-1695

http://doi.org/10.17576/jsm-2021-5006-15

 

Preliminary Study on Effect of Hydrothermal Temperature during TiO2 Synthesis on the Biodiesel Production from Waste Cooking Oil

(Kajian Awal Kesan Suhu Hidroterma semasa Sintesis TiO2 terhadap Penghasilan Biodiesel daripada Sisa Minyak Masak)

 

NURASHINA ABDUL RAHMAN1, ANITA RAMLI1,2* & CHONG FAI KAIT1

 

1Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia

 

2HICoE, Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia

 

Received: 7 July 2020/Accepted: 20 October 2020

 

ABSTRACT

In the present work, effect of hydrothermal temperature from 120 to 160 °C on TiO2 physicochemical properties as well as its photocatalytic activity towards biodiesel production using waste cooking oil (WCO) was investigated. TiO2 was synthesized via hydrothermal method using Titanium butoxide, Ti(OBu)4 as the precursor and nitric acid, HNO3 as the peptizing agent. Next, the synthesized photocatalyst was dried at 60 °C for 24 h and later calcined at 400 °C for 2 h. The synthesized TiO2 was characterized using X-ray diffraction (XRD) and Burnauer- Emmet- Teller (BET) to determine their crystallinity and textural properties. Results showed that all synthesized TiO2 have a mixture of anatase and rutile phase and N2 adsorption- desorption isotherm for all catalyst possess Type IV isotherm according to IUPAC classification with hysteresis loop of type H1. Then, all the synthesized catalysts were tested for biodiesel production using esterified waste cooking oil under visible light irradiation for 1 h and 10 min. Percentage of fatty acid methyl ester (FAMEs) present in the synthesized biodiesel was determined using gas chromatography with flame ionization detector (GC-FID). The synthesized catalyst (T24_160) showed a good photocatalytic activity as the percentage of biodiesel yield was higher (3.41%) compared to the other catalyst.

 

Keywords: Biodiesel; hydrothermal temperature; photocatalyst; physicochemical properties; TiO2

 

ABSTRAK

Kesan suhu hidroterma daripada 120 sehingga 160 °C ke atas sifat fizikokimia TiO2 serta aktiviti pemfotomangkinan terhadap penghasilan biodiesel dengan menggunakan minyak terpakai (WCO) telah dikaji. TiO2 telah disintesis melalui kaedah hidroterma dengan menggunakan Titanium butoksida, Ti(OBu)4 sebagai prekursor dan asid nitrik, HNO3 sebagai agen peptitasi. Fotomangkin yang disintesis telah dikeringkan pada suhu 60 °C selama 24 jam dan kemudian telah terkalsin pada suhu 400 °C selama 2 jam. TiO2 yang telah disintesis dicirikan menggunakan pembelauan sinar- X (XRD) dan Burnauer- Emmet- Teller (BET) untuk menentukan kehabluran dan sifat tekstur fotomangkin tersebut. Hasil kajian mendapati bahawa kesemua mangkin TiO2 disintesis menunjukkan campuran fasa anatas dan rutil serta isoterma penjerapan-penyahjerapan N2 menujukkan isoterma jenis IV berdasarkan pengelasan IUPAC dengan gelung histeresis jenis H1. Seterusnya, kesemua mangkin disintesis telah diuji untuk penghasilan biodiesel menggunakan minyak terpakai yang telah diesterifikasi di bawah sinaran cahaya nampak selama 1 jam 10 min. Peratus asid lemak metil ester (FAMEs) hadir di dalam biodiesel disintesis telah ditentukan dengan menggunakan gas kromatografi - pengesan pengionan nyala (GC- FID). Mangkin yang disintesis (T24_160) menunjukkan aktiviti pemfotomangkinan yang baik dengan peratusan hasil biodiesel lebih tinggi (3.41 %) berbanding dengan mangkin yang lain.

 

Kata kunci: Biodiesel; fotomangkin; sifat fizikokimia; suhu hidroterma; TiO2

 

REFERENCES

Balat, M. & Balat, H. 2010. Progress in biodiesel processing. Applied Energy 87: 1815-1835.

Casallasa, I.D., Carvajal, E., Mahecha, E., Castrillón, C., Gómez, H., López, C. & Romero, D.M. 2018. Pre-treatment of waste cooking oils for biodiesel production. Chemical Engineering Transaction 65: 385-390.

Collazo, G.C., Jahn, S.L., Carreño, N.L.V. & Foletto, E.L. 2011. Temperature and reaction time effects on the structural properties of titanium dioxide nanopowders obtained via the hydrothermal method. Brazilian Journal of Chemical Engineering 28(2): 265-272.

Corro, G., Sanchez, N., Pal, U., Cebada, S. & Fierro, J.L.G. 2017. Solar-irradiation driven biodiesel production using Cr/SiO2 photocatalyst exploiting cooperative interaction between Cr6+ and Cr3+ moieties. Applied Catalysis B: Environmental 203: 43-52.

Demirbas, A. 2005. Biodiesel production from vegetable oils via catalytic and non-catalytic supercritical methanol transesterification methods. Progress in Energy and Combustion Science 31(5-6): 466-487.

Demirbas, A. 2009. Progress and recent trends in biodiesel fuels. Energy Conversion and Management 50: 14-34.

Firoz, S. 2017. A review: Advantages and disadvantages of biodiesel. International Research Journal of Engineering and Technology 4(11): 530-535.

Fischer, K., Gawel, A., Rosen, D., Krause, M., Latif, A.A., Griebel, J., Prager, A. & Schulze, A. 2017. Low-temperature synthesis of anatase/rutile/brookite TiO2 nanoparticles on a polymer membrane for photocatalysis. Catalyst 7: 209.

Fujishima, A. & Honda, K. 1972. Electrochemical photolysis of water at a semiconductor electrode. Nature 238: 37-38.

Gardy, J., Hassanpout, A., Lai, X. & Ahmed, M.H. 2016. Synthesis of Ti(SO4)O solid acid nano-catalyst and its application for biodiesel production from used cooking oil. Applied Catalysis A: General 557: 81-95.

Gashaw, A., Getachew, T. & Teshita, A. 2015. A review on biodiesel production as alternative fuel. Journal of Forest Products & Industries 4(2): 80-85.

Habibullah, M., Masjuki, H.H., Kalam, M.A., Rahman, S.M.A., Mofijur, M., Mobarak, H.M. & Ashraful, A.M. 2015. Potential of biodiesel as a renewable energy source in Bangladesh. Renewable and Sustainable Energy Reviews 50: 819-834.

Hongmanorom, P., Luengnaruemitchi, A., Chollacoop, N. & Yoshimura, Y. 2017. Effect of Pd/MCM-41 pore size on catalytic activity and cis-trans selectivity for partial hydrogenation of canola biodiesel. Energy and Fuels 31(8): 8202-8209.

Hussain, S., Jacob, J., Riaz, N., Mahmod, K., Ali, A., Amin, N., Nabi, G., Isa, M. & Mahmood, M.H.R. 2019. Effect of growth temperature on catalyst free hydrothermal synthesis of crystalline SnO2 microsheets. Ceramics International 45(3): 4053-4058.

Hu, Y., Tsai, H.L. & Huang, C.L. 2003. Effect of brookite phase on the anatase-rutile transition in titania nanoparticles. Journal of the European Ceramic Society 23: 691-696.

Ibhadon, A.O. & Fitzpatrick, P. 2013. Heterogeneous photocatalysis: Recent advances and applications. Catalysts 3: 189-218.

Intarasiri, S., Ratana, T., Sornchamni, T., Phongaksorn, M. & Tungkamani, S. 2017. Effect of pore size diameter of cobalt supported catalyst on gasoline-diesel selectivity. Energy Procedia 138: 1035-1040.

Ismail, S., Ahmed, A.S., Anr, R. & Hamdan, S. 2016. Biodiesel production from Castor oil by using calcium oxide derived from mud clam shell. Journal of Renewable Energy 2016: Article ID. 5274917.

Kusdiana, D. & Saka, S. 2004. Effects of water on biodiesel fuel production by supercritical methanol treatment. Bioresource Technology 91(3): 289-295.

Lam, M.K., Lee, K.T. & Mohamed, A.R. 2009. Sulfated tin oxide as solid superacid catalyst for transesterification of waste cooking oil: An optimization study. Applied Catalysis B: Environmental 93(1-2): 34-139.

Lau, P.K., Kwong, T.L. & Yung, K.F. 2016. Effective heterogenous transition metal glycerolates catalyst for one-step biodiesel production from low grade non-refined Jatropha oil and crude aqueous bioethanol. Scientific Reports 6: 23822.

Lencka, M.M. & Riman, R.E. 1995. Thermodynamics of the hydrothermal synthesis of calcium titanate with reference to other alkaline-earth titanates. Chemistry of Materials 7: 18-25.

Liao, Y. & Que, W. 2010. Preparation and photocatalytic activity of TiO2 nanotube powders derived by a rapid anodization process. Journal of Alloys & Compounds 505(1): 243- 248.

Lotero, E., Liu, Y., Lopez, D.E., Suwannakarn, K., Bruce, D.A. & Goodwin, J.G. 2005. Synthesis of biodiesel via acid catalysis. Industrial and Engineering Chemistry Research 44(14): 5353-5363.

Malligavathy, M., Iyyapushpam, S. & Nishanthi, S.T. 2018. Role of hydrothermal temperature on crystallinity, photoluminescene, photocatalytic and gas sensing properties of TiO2 nanoparticles. Journal of Physics 90: 44.

Mishra, V.K. & Goswami, R. 2018. A review of production, properties and advantages of biodiesel. Biofuels 9(2): 273-289.

Nakata, K. & Fujishima, A. 2012. TiO2 photocatalysis: Design and applications. Journal of Photochemistry & Photobiology C: Photochemistry Reviews 13(3): 169-189.

Olutoye, M.A. & Hameed, B.H. 2011. Synthesis of fatty acid methyl ester from crude jatropha (Jatropha curcas Linnaeus) oil using aluminium oxide modified Mg-Zn heterogeneous catalyst. Bioresource Technology 102(11): 6392-6398.

Santhosh, C., Malathi, A., Daneshvar, A., Kollu, P. & Bhatnagar, P. 2018. Photocatalytic degradation of toxic aquatic pollutants by novel magnetic 3D-TiO2@HPGA nanocomposite. Scientific Report 8: 1-15.

Sharma, A., Karn, R.K. & Pandiyan, S.K. 2014. Synthesis of TiO2 nanoparticles by sol-gel method and their characterization. Journal of Basic & Applied Engineering Research 1(9): 1-5.

Scanlon, D.O., Dunnill, C.W., Buckeridge, J., Shevlin, S.A., Logsdail, A.J., Woodley, S.M., Catlow, C.R.A., Powell, M.J., Palgrave, R.G., Parkin, I.P., Watson, G.W., Keal, T.W., Sherwood, P., Walsh, A. & Sokol, A.A. 2013. Band alignment of rutile and anatase TiO2. Nature Materials 12: 798-801.

Shu, Q., Gao, J., Nawaz, Z., Liao, Y., Wang, D. & Wang, J. 2010. Synthesis of biodiesel from waste vegetable oil with large amounts of free fatty acids using carbon-based solid acid catalyst. Applied Energy 87(8): 2589-2596.

Singh, I. & Birajdar, B. 2017. Synthesis, characterization and photocatalytic activity of mesoporous Na-doped TiO2 nano-powder prepared via a solvent-controlled non-aqueous sol-gel route. RSC Advances 7: 54053.

Su, R., Bechstein, R., , L., Vang, R.T., Sillassen, M., Esbjӧrnsson, B., Palmqvist, A. & Besenbacher, F. 2011. How the anatase- to- rutile ratio influences the photoreactivity of TiO2. Journal of Physical & Chemistry C 115(49): 24287-24292.

Tan, K.T., Lee, K.T. & Mohamed, A.R. 2010. Effects of free fatty acids, water content and co solvent on biodiesel production by supercritical methanol reaction. The Journal of Supercritical Fluids 53(1-3): 88-91.

Tentu, R.D. & Basu, S. 2017. Photocatalytic water splitting for hydrogen production. Current Opinion in Electrochemistry 5: 56-62.

Tjandara, A.D. & Huang, J. 2018. Photocatalytic carbon dioxide reduction by photocatalyst innovation. Chinese Chemical Letter 29(6): 734-746.

Zhang, J., Zhou, P., Liu, J. & Yu, J. 2014. New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2. Physical Chemistry Chemical Physics 16: 20382-20386.

 

*Corresponding author; email: anita_ramli@utp.edu.my

 

 

 

 

previous