Sains Malaysiana 50(7)(2021): 2007-2015

http://doi.org/10.17576/jsm-2021-5007-15

 

Effects of Alpha-Mangostin Encapsulated in Nanostructured Lipid Carriers in Mice with Cerebral Ischemia Reperfusion Injury

(Kesan Alfa-Mangostin yang Dikapsulkan dalam Pembawa Lipid Berstruktur Nano pada Tikus dengan Kecederaan Reperfusi Iskemia Serebrum)

 

ROMGASE SAKAMULA1, TEERAPONG YATA2,3 & WACHIRYAH THONG-ASA1*

 

1Animal Toxicology and Physiology Specialty Research Unit (ATPSRU), Department of Zoology, Faculty of Science, Kasetsart University, Bangkok, Thailand

 

2National Nanotechnology Center (NANOTEC), Pathum Thani, Thailand

 

3Department of Physiology, Chulalongkorn University, Thailand

 

Received: 30 January 2020/Accepted: 11 November 2020

 

ABSTRACT

Cerebral ischemia reperfusion injury (CIRI) is a phenomenon in which the cerebral blood supply is restored after a period of ischemia, resulting in irreversible damage to brain tissue. Oxidative stress plays a crucial role in the development of CIRI, therefore, targeting oxidative stress might be an effective strategy for CIRI prevention and treatment. Many therapeutic substances possess antioxidant and protective properties against neurodegenerative disorders but lack of in vivo application due to their solubility, and bioavailability. We investigated the effects of alpha-mangostin (αM) encapsulated in nanostructured lipid carriers (αM-NLC) on CIRI in mice. Forty male ICR mice were randomly divided into four groups: Sham, ischemia reperfusion (IR), ischemia reperfusion with 25 mg/kg of αM (IR+αM), and ischemia reperfusion with 25 mg/kg of αM-NLC (IR+αM-NLC). After 6 days of oral administrations, IR was delivered using 30 min of bilateral common carotid artery occlusion, followed by 45 min of reperfusion. Cerebral infarction volume, hippocampal neuronal and corpus callosum (CC) white matter damage, malondialdehyde (MDA) level, and catalase (CAT) activity were evaluated. Our results indicated that αM and αM-NLC prevent lipid peroxidation as well as hippocampal CA1, CA3, and CC damage (p<0.05). Only αM-NLC prevented cerebral infarction and enhanced CAT activity (p<0.05). We therefore conclude that αM and αM-NLC have neuroprotective effects against CIRI, and NLC increases therapeutic efficacy of αM against CIRI.

 

Keywords: Alpha-mangostin; cerebral ischemia reperfusion injury; nanostructured lipid carrier; neurodegeneration; oxidative stress

 

ABSTRAK

Kecederaan reperfusi iskemia serebrum (CIRI) adalah fenomena bekalan darah serebrum dipulihkan setelah tempoh iskemia dan mengakibatkan kerosakan yang tidak dapat dipulihkan pada tisu otak. Tekanan oksidatif memainkan peranan penting dalam perkembangan CIRI, oleh itu, pensasaran tekanan oksidatif mungkin merupakan strategi yang berkesan bagi pencegahan dan rawatan CIRI. Banyak bahan terapeutik memiliki sifat antioksidan dan pelindung terhadap gangguan neurodegeneratif tetapi kekurangan aplikasiin vivo disebabkan keterlarutan dan ketersediaan bio. Kami mengkaji kesan alfa-mangostin (αM) yang dikapsulkan dalam pembawa lipid berstruktur nano (αM-NLC) pada CIRI atas tikus. Empat puluh tikus ICR jantan dibahagikan secara rawak kepada empat kumpulan: Sham, reperfusi iskemia (IR), reperfusi iskemia dengan 25 mg/kg αM (IR+αM) dan reperfusi iskemia dengan 25 mg/kg of αM-NLC (IR+αM-NLC). Selepas pemberian oral selama 6 hari, IR dihantar dengan menggunakan oklusi arteri karotid dua hala selama 30 min, diikuti dengan reperfusi selama 45 min. Isipadu infarksi serebrum, kerosakan bahan putih hipokampus neuron dan korpus kalosum (CC), tahap malondialdehid (MDA) dan aktiviti pemangkin (CAT) dinilai. Hasil kajian kami menunjukkan bahawa αM dan αM-NLC mencegah peroksidasi lipid serta kerosakan hipokampus CA1, CA3, dan CC (p<0.05). Hanya αM-NLC yang menghalang infraksi serebrum dan meningkatkan aktiviti pemangkin CAT (p<0.05). Oleh itu, kami menyimpulkan bahawa αM dan αM-NLC mempunyai kesan neuropelindung terhadap CIRI dan NLC meningkatkan keberkesanan terapeutik αM terhadap CIRI.

 

Kata kunci: Alfa-mangostin; kecederaan iskemia reperfusi serebrum; neurodegenerasi; pembawa lipid berstruktur nano; tekanan oksidatif

 

REFERENCES

Aboutaleb, N., Shamsaei, N., Rajabi, H., Khaksari, M., Erfani, S., Motamedi, P. & Shahbazi, A. 2016. Protection of hippocampal CA1 neurons against ischemia/reperfusion injury by exercise preconditioning via modulation of Bax/Bcl-2 ratio and prevention of Caspase-3 activation. Basic and Clinical Neuroscience 7(1): 21-30.

Badmus, J.A., Adedosu, T.O., Fatoki, J.O., Adegbite, V.A., Adaramoye, O.A. & Odunola, A.O. 2011. Lipid peroxidation inhibition and antiradical activities of some leaf fractions of Mangifera indica. Acta Poloniae Pharmaceutica 68(1): 23-29.

Buelna-Chontal, M., Correa, F., Hernandez-Resendiz, S., Zazueta, C. & Pedraza-Chaverri, J. 2011. Protective effect of alpha-mangostin on cardiac reperfusion damage by attenuation of oxidative stress. Journal of Medicinal Food 14(11): 1370-1374.

Catorce, M.N., Acero, G., Pedraza-Chaverri, J., Fragoso, G., Govezensky, T. & Gevorkian, G. 2016. Alpha-mangostin attenuates brain inflammation induced by peripheral lipopolysaccharide administration in C57BL/6J mice. Journal of Neuroimmunology 297: 20-27.

Choi, Y.H., Han, S.Y., Kim, Y.J., Kim, Y.M. & Chin, Y.W. 2014. Absorption, tissue distribution, tissue metabolism and safety of α-mangostin in mangosteen extract using mouse models. Food and Chemical Toxicology 66: 140-146.

Donkor, E.S. 2018. Stroke in the 21(st) century: A snapshot of the burden, epidemiology, and quality of life. Stroke Research and Treatment 2018: 1-10.

Fang, C.L., Al-Suwayeh, S.A. & Fang, J.Y. 2012. Nanostructured Lipid Carries (NLCs) for drug delivery and targeting. Recent Patents on Nanotechnology 7(1): 41-55.

Ghasemzadeh, A., Jaafar, H.Z.E., Baghdadi, A. & Tayebi-Meigooni, A. 2018. Alpha-mangostin-rich extracts from mangosteen pericarp: Optimization of green extraction protocol and evaluation of biological activity. Molecules 23(8): 1852.

Gonzalez-Montero, J., Brito, R., Gajardo, A.I. & Rodrigo, R. 2018. Myocardial reperfusion injury and oxidative stress: Therapeutic opportunities. World Journal of Cardiology 10(9): 74-86.

Hadwan, M.H. & Abed, H.N. 2016. Data supporting the spectrophotometric method for the estimation of catalase activity. Data in Brief 6: 194-199.

Jia, J., Hu, Y.S., Wu, Y., Liu, G., Yu, H.X., Zheng, Q.P., Zhu, D.N., Xia, C.M. & Cao, Z.J. 2009. Pre-ischemic treadmill training affects glutamate and gamma aminobutyric acid levels in the striatal dialysate of a rat model of cerebral ischemia. Life Sciences 84(15-16): 505-511.

Kalogeris, T., Baines, C.P., Krenz, M. & Korthuis, R.J. 2012. Cell biology of ischemia/reperfusion injury. International Review of Cell and Molecular Biology 298: 229-317.

Kishimoto, M., Suenaga, J., Takase, H., Araki, K., Yao, T., Fujimura, T., Murayama, K., Okumura, K., Ueno, R., Shimizu, N., Kawahara, K., Yamamoto, T. & Seko, Y. 2019. Oxidative stress-responsive apoptosis inducing protein (ORAIP) plays a critical role in cerebral ischemia/reperfusion injury. Scientific Reports 9: 13512.

Kumar, V., Bhatt, P.C., Kaithwas, G., Rashid, M., Al-abbasi, F.A., Khan, J.A.J., Anwar, F. & Verma, A. 2016. α-mangostin mediated pharmacological modulation of hepatic carbohydrate metabolism in diabetes induced wistar rat. Beni-Suef University Journal of Basic and Applied Sciences 5(3): 255-276.

Lee, J.C. & Won, M.H. 2014. Neuroprotection of antioxidant enzymes against transient global cerebral ischemia in gerbils. Anatomy & Cell Biology 47(3): 149-156.

Lee, J.M., Grabb, M.C., Zipfel, G.J. & Choi, D.W. 2000. Brain tissue response to ischemia. The Journal of Clinical Investigation 106(6): 723-731.

Liang, G., Shi, B., Luo, W. & Yang, J. 2015. The protective effect of caffeic acid on global cerebral ischemia-reperfusion injury in rats. Behavioral and Brain Functions 11: 18.

Liu, C., Wu, J., Xu, K., Cai, F., Gu, J., Ma, L. & Chen, J. 2010. Neuroprotection by baicalein in ischemic brain injury involves PTEN/AKT pathway. Journal of Neurochemistry 112(6): 1500-1512.

Márquez-Valadez, B., Lugo-Huitrón, R., Valdivia-Cerda, V., Miranda-Ramírez, L.R., Pérez-De La Cruz, V., González-Cuahutencos, O., Rivero-Cruz, I., Mata, R., Santamaría, A. & Pedraza-Chaverrí, J. 2009. The natural xanthone α-mangostin reduces oxidative damage in rat brain tissue. Nutritional Neuroscience 12(1): 35-42.

Masserini, M. 2013. Nanoparticles for brain drug delivery. ISRN Biochemistry 2013: 238428.

Medvedeva, Y.V., Ji, S.G., Yin, H.Z. & Weiss, J.H. 2017. Differential vulnerability of CA1 versus CA3 pyramidal neurons after ischemia: Possible relationship to sources of Zn2+ accumulation and its entry into and prolonged effects on mitochondria. The Journal of Neuroscience 37(3): 726-737.

Mu, X., He, G.R., Yuan, X., Li, X.X. & Du, G.H. 2011. Baicalein protects the brain against neuron impairments induced by MPTP in C57BL/6 mice. Pharmacology Biochemistry and Behavior 98(2): 286-291.

Paxinos, G. & Franklin, F. 2008. The Mouse Brain in Stereotaxic Coordinates. New York: Academic Press.

Perez-Rojas, J., Cruz, C., Garcia-Lopez, P., Sanchez-Gonzalez, D.J., Martinez-Martinez, C.M., Ceballos, G., Espinosa, M., Melendez-Zajgla, J. & Pedraza-Chaverri, J. 2009. Renoprotection by alpha-mangostin is related to the attenuation in renal oxidative/nitrosative stress induced by cisplatin nephrotoxicity. Free Radical Research 43(11): 1122-1132.

Poellmann, M.J., Bu, J. & Hong, S. 2018. Would antioxidant-loaded nanoparticles present an effective treatment for ischemic stroke? Nanomedicine 13(18): 1-14.

Rao, V.L., Dogan, A., Bowen, K.K., Todd, K.G. & Dempsey, R.J. 2001. Antisense knockdown of the glial glutamate transporter GLT-1 exacerbates hippocampal damage following traumatic injury to rat brain. The European Journal of Neuroscience 13(1): 119-128.

Rothstein, J.D., Dykes-Hoberg, M., Pardo, C.A., Bristol, L.A., Jin, L., Kuncl, R.W., Kanai, Y., Hediger, M.A., Wang, Y., Schielke, J.P. & Welty, D.F. 1996. Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron 16(3): 675-686.

Sakamula, R. & Thong-Asa, W. 2018. Neuroprotective effect of p-coumaric acid in mice with cerebral ischemia reperfusion injuries. Metabolic Brain Disease 33(3): 765-773.

Sakamula, R., Sakdapitak, C. & Thong-Asa, W. 2019. Effect of P-hydroxycinnamic acid in mice model of cerebral ischemia-reperfusion injury. Sains Malaysiana 48(10): 2221-2227.

Sampath, P.D. & Vijayaraghavan, K. 2007. Cardioprotective effect of alpha-mangostin, a xanthone derivative from mangosteen on tissue defense system against isoproterenol-induced myocardial infarction in rats. Journal of Biochemical and Molecular Toxicology 21(6): 336-339.

Sun, M.S., Jin, H., Sun, X., Huang, S., Zhang, F.L., Guo, Z.N. & Yang, Y. 2018. Free radical damage in ischemia-reperfusion injury: An obstacle in acute ischemic stroke after revascularization therapy. Oxidative Medicine and Cellular Longevity 2018: 3804979.

Tamjidi, F., Shahedi, M., Varshosaz, J. & Nasirpour, A. 2013. Nanostructured lipid carriers (NLC): A potential delivery system for bioactive food molecules. Innovative Food Science & Emerging Technologies 19(1): 29-43.

Tapeinos, C., Battaglini, M. & Ciofani, G. 2017. Advances in the design of solid lipid nanoparticles and nanostructured lipid carriers for targeting brain diseases. Journal of Controlled Release 264: 306-332.

Thong-Asa, W., Tumkiratiwong, P., Bullangpoti, V., Kongnirundonsuk, K. & Tilokskulchai, K. 2017. Tiliacora triandra (Colebr.) Diels leaf extract enhances spatial learning and learning flexibility, and prevents dentate gyrus neuronal damage induced by cerebral ischemia/reperfusion injury in mice. Avicenna Journal of Phytomedicine 7(5): 389-400.

Wang, Y., Liu, G., Hong, D., Chen, F., Ji, X. & Cao, G. 2016. White matter injury in ischemic stroke. Progress in Neurobiology 141(1): 45-60.

Wicha, P., Tocharus, J., Janyou, A., Jittiwat, J., Changtam, C., Suksamrarn, A. & Tocharus, C. 2017. Hexahydrocurcumin protects against cerebral ischemia/reperfusion injury, attenuates inflammation, and improves antioxidant defenses in a rat stroke model. PloS ONE 12(12): e0189211.

Yan, B.C., Park, J.H., Lee, C.H., Yoo, K.Y., Choi, J.H., Lee, Y.J., Cho, J.H., Baek, Y.Y., Kim, Y.M. & Won, M.H. 2011. Increases of antioxidants are related to more delayed neuronal death in the hippocampal CA1 region of the young gerbil induced by transient cerebral ischemia. Brain Research 1425(1): 142-154.

Yao, L., Gu, X., Song, Q., Wang, X., Huang, M., Hu, M., Hou, L., Kang, T., Chen, J., Chen, H. & Gao, X. 2016. Nanoformulated alpha-mangostin ameliorates Alzheimer's disease neuropathology by elevating LDLR expression and accelerating amyloid-beta clearance. Journal of Controlled Release 226(1): 1-14.

Yostawonkul, J., Surassmo, S., Namdee, K., Khongkow, M., Boonthum, C., Pagseesing, S., Saengkrit, N., Ruktanonchai, U.R., Chatdarong, K., Ponglowhapan, S. & Yata, T. 2017. Nanocarrier-mediated delivery of alpha-mangostin for non-surgical castration of male animals. Scientific Reports 7(1): 16234.

Zhang, K.J., Gu, Q.L., Yang, K., Ming, X.J. & Wang, J.X. 2016. Anticarcinogenic effects of α-mangostin: A review. Planta Medica 83(3-04): 188-202.

 

*Corresponding author; email: fsciwyth@ku.ac.th

 

 

 

previous