Sains Malaysiana 51(2)(2022): 473-483

http://doi.org/10.17576/jsm-2022-5102-12

 

Growth and Quality of Hydroponic Cultivated Spinach (Spinacia oleracea L.) Affected by the Light Intensity of Red and Blue LEDs

 (Pertumbuhan dan Kualiti Bayam (Spinacia oleracea L.) yang Dipengaruhi oleh Keamatan Cahaya Lampu LED Biru dan Merah

 

THI-PHUONG-DUNG NGUYEN1, NGOC-THANG VU1, QUANG-THACH NGUYEN3, THI-THANH-HUYEN TRAN2, PHI-BANG CAO4, IL-SEOP KIM5 & DONG-CHEOL JANG5*

 

1Faculty of Agronomy, Vietnam National University of Agriculture, Hanoi, Vietnam

 

2Faculty of Biology, Hanoi National University of Education, Hanoi, Vietnam

 

3Institute of Agrobiology, Vietnam National University of Agriculture, Hanoi, Vietnam

 

4Department of Natural Sciences, Hung Vuong University, Phu Tho, Vietnam

 

5Department of Horticulture, Kangwon National University, Chuncheon 200-701, Korea

 

Received: 1 December 2020/Accepted: 15 July 2021

 

ABSTRACT

This study aimed to evaluate the effect of four light intensities (90, 140, 190 and 240 µmol m-2 s-1) provided by red-blue LED light (spectrum ratio: R660/B450 = 4/1) on the growth and quality of hydroponic cultivated spinach. The results showed that when the light intensity increased, plant height, leaf number, root length, leaf width, shoot fresh weight, shoot dry weight, root fresh weight and root dry weight were increased but specific leaf weight and shoot-to-root ratio did not increase. The highest values of growth parameters were observed under 190 µmol m-2 s-1 treatment, while the lowest values were observed under 90 µmol m-2 s-1 treatment. At higher light intensities, K+, oxalic acid and nitrate contents tended to decrease but not Ca2+ content. Meanwhile, the highest values of Fe2+, crude fiber, soluble-solids, total polyphenol and vitamin C contents were observed under 190 µmol m-2 s-1 treatment, but 190 µmol m-2 s-1 treatment showed the lowest organic acid content. Our results indicated that among all experimental lighting treatments, 190 µmol m-2 s-1 light intensity showed the best effect on the growth and quality of hydroponic cultivated spinach.

 

Keywords: Growth; LEDs; light intensity; quality; spinach

 

ABSTRAK

Kajian ini bertujuan untuk menilai kesan empat keamatan cahaya (90, 140, 190 dan 240 µmol m-2 s-1) yang disediakan oleh lampu LED merah-biru (nisbah spektrum: R660/B450 = 4/1) terhadap pertumbuhan dan kualiti bayam hidroponik. Hasil kajian menunjukkan bahawa ketika keamatan cahaya meningkat, kepanjangan tanaman, jumlah daun, panjang akar, lebar daun, berat segar pucuk, berat kering pucuk, berat segar akar dan berat kering akar meningkat tetapi berat daun khusus dan nisbah pucuk:akar tidak meningkat. Nilai tertinggi parameter pertumbuhan diperhatikan di bawah perlakuan 190 µmol m-2 s-1, sementara nilai terendah diperhatikan di bawah rawatan 90 µmol m-2 s-1. Pada keamatan cahaya yang lebih tinggi, kandungan K+, asid oksalik dan nitrat cenderung untuk menurun tetapi tidak bagi kandungan Ca2+. Sementara itu, nilai tertinggi Fe2+, serat kasar, zat terlarut, jumlah polifenol dan vitamin C diperhatikan di bawah rawatan 190 µmol m-2 s-1, tetapi rawatan 190 µmol m-2 s-1 menunjukkan kandungan asid organik terendah. Hasil kajian kami menunjukkan bahawa antara semua rawatan pencahayaan, keamatan cahaya 190 µmol m-2 s-1 menunjukkan kesan terbaik terhadap pertumbuhan dan kualiti bayam hidroponik.

 

Kata kunci: Bayam; keamatan cahaya; kualiti; LED; pertumbuhan

 

REFERENCES

Antia, B.S., Akpan, E.J., Okon, P.A. & Umoren, I.U. 2006. Nutritive and anti-nutritive evaluation of sweet potatoes (Ipomoea batatas) leaves. Pakistan Journal of Nutrition 5(2): 166-168.

Atkinson, D. 1990. Influence of root system morphology and development on the need for fertilizers and the efficiency of use. In Crops as Enhancers of Nutrient Use, edited by Duncan, R.R. & Baligar, V.C. London: Academic Press. pp. 411-451.

Bian, Z., Yang, Q., Li, T., Cheng, R., Barnett, Y. & Lu, C. 2018. Study of the beneficial effects of green light on lettuce grown under shortterm continuous red and blue lightemitting diodes. Physiologia Plantarum 164(2): 226-240.

Bian, Z.H., Yang, Q.C. & Liu, W.K. 2015. Effects of light quality on the accumulation of phytochemicals in vegetables produced in controlled environments: A review. Journal of the Science of Food and Agriculture 95(5): 869-877.

Bula, R.J., Morrow, R.C., Tibbitts, T.W., Barta, D.J., Ignatius, R.W. & Martin, T.S. 1991. Light-emitting diodes as a radiation source for plants. HortScience 26(2): 203-205.

Chen, X.L., Guo, W.Z., Xue, X.Z., Wang, L.C. & Qiao, X.J. 2014. Growth and quality responses of ‘Green Oak Leaf’ lettuce as affected by monochromic or mixed radiation provided by fluorescent lamp (FL) and light-emitting diode (LED). Scientia Horticulturae 172: 168-175.

Dapoigny, L., Tourdonnet, S.D., Roger-Estrade, J., Jeuffroy, M.H. & Fleuryr, A. 2000. Effect of nitrogen nutrition on growth and nitrate accumulation in lettuce (Lactuca sativa L.) under various conditions of radiation and temperature. Agronomie 20(8): 843-855.

Dorais, M., Ehret, D.L. & Papadopoulos, A.P. 2008. Tomato (Solanum lycopersicum) health components: From the seed to the consumer. Phytochemistry Reviews 7: 231-250.

Fu, Y.M., Li, H., Yu, J., Liu, H., Cao, Z., Manukovsky, N.S. & Liu, H. 2017. Interaction effects of light intensity and nitrogen concentration on growth, photosynthetic characteristics and quality of lettuce (Lactuca sativa L. var. youmaicai). Scientia Horticulturae 214: 51-57.

Furuyama, S., Ishigami, Y., Hikosaka S. & Goto, E. 2014. Effects of blue/red ratio and light intensity on photomorphogenesis and photosynthesis of red leaf lettuce. Acta Horticulture 1037: 317-322.

Gahler, S., Otto, K. & Böhm, V. 2003. Alterations of vitamin C, total phenolics, and antioxidant capacity as affected by processing tomatoes to different products. Journal of Agricultural and Food Chemistry 51(27): 7962-7968.

Gaudreau, L., Charbonneau, J., Vezina, L.P. & Gosselin, A. 1995. Effects of photoperiod and photosynthetic photon flux on nitrate content and nitrate reductase activity in greenhouse grown lettuce. Journal of Plant Nutrition 18(3): 437-453.

Gerovac, J.R., Craver, J.K., Boldt, J.K. & Lopez R.G. 2016. Light intensity and quality from sole-source light-emitting diodes impact growth, morphology, and nutrient content of Brassica microgreens. HortScience 51(5): 497-503.

Goins, G.D., Yorio, N.C., Sanwo, M.M. & Brown, C.S. 1997. Photomorphogenesis, photosynthesis, and seed yield of wheat plants grown under red light-emitting diodes (LEDs) with and without supplemental blue lighting. Journal of Experimental Botany 48(7): 1407-1413.

Graamans, L., Baeza, E., Dobbelsteen, A.V.D., Tsafaras, I. & Stanghellini, C. 2018. Plant factories versus greenhouses: Comparison of resource use efficiency. Agricultural Systems 160: 31-43.

Gruda, N. 2005. Impact of environmental variables on product quality of greenhouse vegetables for fresh consumption. Critical Reviews in Plant Science 24(3): 227-247. 

Grygoray, E.E., Tabalenkova, G.N., Dalke, I.V. & Golovko, T.K. 2015. Mineral nutrition and productivity of the greenhouse cucumber crop depending on lighting. Agrokhimiya 4: 74-79.

Hoagland, D.R. & Arnon, D.I. 1950. The water-culture method for growing plants without soil. Circular. California Agricultural Experiment Station 347(2): 1-32.

Hogewoning, S.W., Trouwborst, G., Maljaars, H., Poorter, H., Ieperen, W.V. & Harbinson, J. 2010. Blue light dose-responses of leaf photosynthesis, morphology, and chemical composition of Cucumis sativus grown under different combinations of red and blue light. Journal of Experimental Botany 61(11): 3107-3117.

Horwitz, W. 1980. Official Methods of Analysis of the Association of Official Analytical Chemists. Washington: Association of Official Analytical Chemists.

Jiao, Y., Lau, O.S. & Deng, X.W. 2007. Light-regulated transcriptional networks in higher plants. Nature Review Genetics 8: 217-230.

Johkan, M., Shoji, K., Goto, F., Hahida, S. & Yoshihara, T. 2012. Effect of green light wavelength and intensity on photomorphogenesis and photosynthesis in Lactuca sativa. Environmental and Experimental Botany 75: 128-133.

Kazuo, Y. & Nobutoshi, S. 1998. Effect of temperature and light intensity on the growth and flowering of Odontoglossum intergeneric hybrids. Journal of the Japanese Society of Horticulture Science 67(4): 619-625.

Ko, S.H., Park, J.H., Kim, S.Y., Lee, S.W., Chun, S.S. & Park, E. 2014. Antioxidant effects of spinach (Spinacia oleracea L.) supplementation in hyperlipidemic rats. Preventive Nutrition and Food Science 19(1): 19-26.

Kozai, T. 2018. Current status of plant factories with artificial lighting (PFALs) and smart PFALs. In Smart Plant Factory, edited by Kozai, T. Singapore: Springer. pp. 3-14.

Kumar, N. & Goel, N. 2019. Phenolic acids: Natural versatile molecules with promising therapeutic applications. Biotechnology Reports 24: 1-10.

Lichtenthaler, H.K., Marek, M.V., Kalina, J. & Urban, O. 2007. Differences in pigment composition, photosynthetic rates and chlorophyll fluorescence images of sun and shade leaves of four tree species. Plant Physiology and Biochemistry 45(8): 577-588.

Lillo, C. 1994. Light regulation of nitrate reductase in green leaves of higher plants. Physiologia Plantarum 90(3): 616-620.

Loewus, F.A. 1999. Biosynthesis and metabolism of ascorbic acid in plants and of analogs of ascorbic acid in fungi. Phytochemistry 52(2): 193-210.

Lu, N. & Shimamura, S. 2018. Protocols, issues and potential improvements of current cultivation systems. In Smart Plant Factory, edited by Kozai, T. Singapore: Springer. pp. 31-49.

McNellis, T.W. & Deng, X.W. 1995. Light control of seedling morphogenetic pattern. The Plant Cell 7(11): 1749-1761.

Miyagi, A., Uchimiya, H. & Kawai-Yamada, M. 2017. Synergistic effects of light quality, carbon dioxide and nutrients on metabolite compositions of head lettuce under artificial growth conditions mimicking a plant factory. Food Chemistry 218: 561-568.

Poiroux-Gonord, F., Bidel, L.P.R., Fanciullino, A.L., Gautier, H., Lauri-Lopez, F. & Urban, L. 2010. Health benefits of vitamins and secondary metabolites of fruits and vegetables and prospects to increase their concentrations by agronomic approaches. Journal of Agriculture and Food Chemistry 58(23): 12065-12082.

Proietti, S., Moscatello, S., Giacomelli, G.A. & Battistelli, A. 2013. Influence of the interaction between light intensity and CO2 concentration on productivity and quality of spinach (Spinacia oleracea L.) grown in fully controlled environment. Advances in Space Research 52(6): 1193-1200.

Proietti, S., Moscatello, S., Leccese, A., Colla, G. & Battistelli, A. 2004. The effect of growing spinach (Spinacia oleracea L.) at two light intensities on the amounts of oxalate, ascorbate and nitrate in their leaves. The Journal of Horticultural Science and Biotechnology 79(4): 606-609.

Rajashekar, C., Carey, E.E., Zhao, X. & Oh, M.M. 2009. Health-promoting phytochemicals in fruits and vegetables: Impact of abiotic stresses and crop production practices. Functional Plant Science and Biotechnology 3(1): 30-38.

Rasmusson, D.C. & Gengenbach, B.G. 1984. Genetics and use of physiological variability in crop breeding. In Physiological Basis of Crop Growth and Development, edited by Tesar, M.B. Madison: American Society of Agronomy and Crop Science Society of America. pp. 291-321.

Rout, G.R. & Sahoo, S. 2015. Role of iron in plant growth and metabolism. Reviews in Agricultural Science 3: 1-24.

Rosales, M.A., Cervilla, L.M., Sanchez-Rodrıguez, E., Rubio-Wilhelmi, M.M., Blasco, B., Rios, J.J., Soriano, T., Castilla, N., Romero, L. & Ruiz, J.M. 2011. The effect of environmental conditions on nutritional quality of cherry tomato fruits: Evaluation of two experimental Mediterranean greenhouses. Journal of the Science of Food and Agriculture 91(1): 152-162.      

Sanui, H. 1971. Activated oxygen ashing of biological specimens for the microdetermination of Na, K, Mg, and Ca by atomic absorption spectrophotometry. Analytical Biochemistry 42(1): 21-28.

Scaife, A. & Schloemer, S. 1994. The diurnal pattern of nitrate uptake and reduction by spinach (Spinacia oleracea L.). Annals of Botany 73(3): 337-343.

Shinn, M.B. 1941. Colorimetric method for determination of nitrate. Industrial and Engineering Chemistry Analytical Edition 13(1): 33-35. 

Singleton, V.L. & Rossi, J.A. 1965. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture 16(3): 144-158.

Son, K.H. & Oh, M.M. 2013. Leaf shape, growth, and antioxidant phenolic compounds of two lettuce cultivars grown under various combinations of blue and red light-emitting diodes. HortScience 48(8): 988-995.

Terashima, I., Fujita, T., Inoue, T., Chow, W.S. & Oguchi, R. 2009. Green light drives leaf photosynthesis more efficiently than red light in strong white light: Revisiting the enigmatic question of why leaves are green. Plant and Cell Physiology 50(4): 684-697.

Thor, K. 2019. Calcium-nutrient and messenger. Frontiers in Plant Science 10(440): 1-7. 

Ülger, T.G., Songur, A.N., Çırak, O. & Çakıroğlu, F.P. 2018. Role of vegetables in human nutrition and disease prevention. In Vegetables: Importance of Quality Vegetables to Human Health, edited by Asaduzzaman, M. & Asai, T. London: IntechOpen. pp. 7-32.

Viršilė, A., Olle, M. & Duchovskis, P. 2017. LED lighting in horticulture. In Light Emitting Diodes for Agriculture, edited by Gupta, S.D. Singapore: Springer. pp. 113-147.

Wang, J., Lu, W., Tong, Y. & Yang, Q. 2016. Leaf morphology, photosynthetic performance, chlorophyll fluorescence, stomatal development of lettuce (Lactuca sativa L.) exposed to different ratios of red light to blue light. Frontiers in Plant Science 7(250): 1-10.

Wang, Y., Wang, J., Cheng, W., Zhao, Z. & Cao, J. 2014. HPLC method for the simultaneous quantification of the major organic acids in Angeleno plum fruit. IOP Conference Series: Materials Science and Engineering 62(1): 1-7.

Wang, Y., Alonso, J.M. & Ruan, X. 2017. High-performance LED drivers. IEEE Transactions on Industrial Electronics 64(7): 5751-5753.

Zavala, J.A. & Ravetta, D.A. 2001. Allocation of photoassimilates to biomass, resin and carbohydrates in Grindelia chiloensis as affected by light intensity. Field Crops Research 69(2): 143-149.

Zhou, J., Li, P.P., Wang, J.Z. & Fu, W.G. 2019. Growth, photosynthesis, and nutrient uptake at different light intensities and temperatures in lettuce. HortScience 54(11): 1925-1933.

 

*Corresponding author; email: jdc@kangwon.ac.kr

 

     

 

 

previous