Sains Malaysiana 51(2)(2022): 485-494

http://doi.org/10.17576/jsm-2022-5102-13

 

Preparation and Characterization of Sodium Alginate-Based Edible Film with Antibacterial Additive using Lemongrass Oil

 (Penyediaan dan Pencirian Filem Boleh Dimakan Berasaskan Natrium Alginat dengan Bahan Tambah Antibakteria menggunakan Minyak Serai)

 

FARHANA OTHMAN1*, SITI NURDALILI IDRIS1, NOR ATIKAH HUSNA AHMAD NASIR1 & MOHD AZIZI NAWAWI2

 

1Faculty of Applied Sciences, Universiti Teknologi MARA, 02600 Arau, Perlis, Malaysia

 

2Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor Darul Ehsan Malaysia

 

Received: 26 October 2020/Accepted: 15 June 2021

 

ABSTRACT

Sodium alginate films at various concentrations of glycerol (0.4, 0.6, and 0.8% v/v) were prepared and characterized. The thickness, water solubility (WS), water vapor transmission rate (WVTR), tensile strength (TS), elongation at break (EB) and Young’s Modulus (YM) of the films were affected by the amount of glycerol added. Among these films, the film containing lower glycerol (0.4 % v/v) presents better WS, WVTR, and the highest TS compared to other concentrations. Sodium alginate films containing lemongrass essential oil (LEO) were prepared to examine its antibacterial properties on four common foodborne pathogens: B. subtilis, S. aureus, E. coli, and P. aeruginosa using Disc-diffusion assay. The highest inhibition was shown by E. coli (21 mm/susceptible), B. subtilis (18 mm/intermediate), S. aureus (16 mm/intermediate), and P. aeruginosa (13.5 mm/resistant). The incorporation of lemongrass essential oil as a natural antibacterial agent in the film formulation has developed its potential to be used as an active packaging with improved physical properties, especially water barrier properties.

 

Keywords: Antibacterial properties; edible film; lemongrass essential oil; mechanical properties; sodium alginate

 

ABSTRAK

Filem natrium alginat pada pelbagai kepekatan gliserol (0.4, 0.6 dan 0.8% v/v) disediakan dan dicirikan. Ketebalan, keterlarutan air (WS), kadar penghantaran wap air (WVTR), kekuatan tegangan (TS), pemanjangan pada waktu rehat (EB) dan Young’s Modulus (YM) filem adalah dipengaruhi oleh jumlah gliserol yang ditambah. Antara filem ini, filem yang mengandungi gliserol rendah (0.4% v/v) menunjukkan WS, WVTR yang lebih baik dan TS tertinggi berbanding dengan kepekatan yang lain. Filem natrium alginat yang mengandungi minyak pati serai (LEO) disediakan untuk mengkaji ciri anti-bakteria pada empat patogen bawaan makanan biasa: B. subtilis, S. aureus, E. coli dan P. aeruginosa dengan menggunakan ujian disk-difusi. Perencatan tertinggi ditunjukkan oleh E. coli (21 mm/rentan), B. subtilis (18 mm/perantaraan), S. aureus (16 mm/perantaraan) dan P. aeruginosa (13.5 mm/tahan). Penggabungan LEO sebagai agen anti-bakteria semula jadi dalam pembuatan filem telah mengembangkan potensi sebagai pembungkusan aktif, tetapi cirinya dapat diubah, terutama sifat penghalang air.

 

Kata kunci: Ciri antibakteria; ciri mekanikal; filem boleh makan; minyak pati serai; natrium alginat

 

REFERENCES

Abe, S., Sato, Y., Inoue, S., Ishibashi, H., Maruyama, N., Takizawa, T., Oshima, H. & Yamaguchi, H. 2003. Anti-Candida albicans activity of essential oils including lemongrass (Cymbopogon citratus) oil and its component, citral. Nihon Ishinkin Gakkai Zasshi44(4): 285-291.

Ali, M.M., Yusuf, M.A. & Abdalaziz, M.N. 2017. GC-MS Analysis and antimicrobial screening of essential oil from lemongrass (Cymbopogon citratus). International Journal of Pharmacy and Chemistry 3(6): 72-76.

Beetle, L. 2017. Steam Distilling Essential Oils at Home. http://www.thelazybeetle.com/steam-distilling-essential-oils-at-home/. Accessed on 20 April 2019.

Boukhatem, M.N., Ferhat, M.A., Kameli, A., Saidi, F. & Kebir, H.T. 2014. Lemon grass (Cymbopogon citratus) essential oil as a potent anti-inflammatory and antifungal drug. Libyan Journal of Medicine 9(1): 25431.

Burt, S. 2004. Essential oils: Their antibacterial properties and potential applications in foods - A review. International Journal of Food Microbiology 94(3): 223-253.

Cao, L., Liu, W. & Wang, L. 2018. Developing a green and edible film from Cassia gum: The effects of glycerol and sorbitol. Journal of Cleaner Production 175: 276-282.

Chowdhury, S.R., Tandon, P.K. & Chowdhury, A.R. 2010. Chemical composition of the essential oil of Cymbopogon flexuosus (Steud) wats. growing in Kumaon region. Journal of Essential Oil Bearing Plants 13(5): 588-593.

Cox, S.D., Mann, C.M., Markham, J.L., Bell, H.C., Gustafson, J.E., Warmington, J.R. & Wyllie, S.G. 2000. The mode of antimicrobial action of the essential oil of Melaleuca alternifolia (tea tree oil). Journal of Applied Microbiology 88(1): 170-175.

Desai, M.A., Parikh, J. & De, A.K. 2014. Modelling and optimization studies on extraction of lemongrass oil from Cymbopogon floxuosus (Steud.) wats. Chemical Engineering Research and Design 92: 793-803.

Erkman, O. & Barazi, A.M. 2018. General characteristics of edible films. Journal of Food Biotechnology Research 2: 1-3.

Guilbert, S., Gontard, N. & Gorris, L.G.M. 1996. Prolongation of the shelf-life of perishable food products using biodegradable films and coatings. Food Science and Technology 29(1-2): 10-17.

Gupta, A.K., Muhury, R. & Ganjewala, D. 2016. A study on antimicrobial activities of essential oils of different cultivars of lemongrass (Cymbopogon flexuosus). Pharmaceutical Sciences 22(3): 164-169.

Han, J.H. 2014. Edible films and coatings: A review. In Innovation in Food Packaging, 2nd ed. London: Academic Press. pp. 213-255.

Janjarasskul, T. & Krochta, J.M. 2010. Edible packaging materials. Annual Review of Food Science and Technology 1(1): 415-448.

Karbowiak, T., Hervet, H., Léger, L., Champion, D., Debeaufort, F. & Voilley, A. 2006. Effect of plasticizers (water and glycerol) on the diffusion of a small molecule in iota-carrageenan biopolymer films for edible coating application. Biomacromolecules 7(6): 2011-2019.

Kok, J.M.L. & Wong, C.L. 2018. Physicochemical properties of edible alginate film from Malaysian Sargassum polycystum C. Agardh. Journal of Sustainable Chemistry and Pharmacy 9: 87-94.

Kopacic, S., Walzl, A., Zankel, A., Leitner, E. & Bauer, W. 2018. Alginate and chitosan as a functional barrier for paper-based packaging materials. Coating 8(7): 235.

Lee, P. & Rogers, M.A. 2012. Effect of calcium source and exposure-time on basic caviar spherification using sodium alginate. International Journal of Gastronomy and Food Science 1(2): 96-100.

Li, B., Kennedy, J.F., Peng, J.L., Yie, X.B. & Xie, B.J. 2006. Preparation and performance evaluation of glucomannan-chitosan-nisin ternary antimicrobial blend film. Carbohydrate Polymers 65(4): 488-494.

Maizura, M., Fazilah, A., Norziah, M.H. & Karim, A.A. 2007. Antibacterial activity and mechanical properties of partially hydrolyzed sago starch–alginate edible film containing lemongrass oil. Journal of Food Science 72(6): C324-330.

Naik, M.I., Fomda, B.A., Jaykumar, E. & Bhat, J.A. 2010. Antibacterial activity of lemongrass (Cymbopogon citratus) oil against some selected pathogenic bacterias. Asian Pacific Journal of Tropical Medicine 3(7): 535-538.

Pitak, N. & Rakshit, S.K. 2011. Physical and antimicrobial properties of banana flour/chitosan biodegradable and self-sealing films used for preserving fresh-cut vegetables. LWT-Food Science and Technology 44(10): 2310-2315.

Pranoto, Y., Salokhe, V.M. & Rakshit, S.K. 2005. Physical and antibacterial properties of alginate-based edible film incorporated with garlic oil. Food Research International 38(3): 267-272.

Rhim, J.W. 2004. Physical and chemical properties of water-resistant sodium alginate films. LWT- Food Science and Technology 37(3): 323-330.

Romero-Bastida, C.A., Bello-Pérez, L.A., García, M.A., Martino, M.N., Solorza-Feria, J. & Zaritzky, N.E. 2005. Physicochemical and microstructural characterization of films prepared by thermal and cold gelatinization from non-conventional sources of starch. Carbohydrate Polymers 60(2): 235-244.

Sitompul, A.J.W.S. & Zubaidah, E. 2017. Effect of plasticizer type and concentration on physical properties of edible film of kolang kaling (Arenga pinnata). Journal of Food and Agro-Industry 5(1): 13-25.

Sothornvit, R. & Krochta, J.M. 2005. Plasticizers in edible films and coatings. Innovations in Food Packaging 1(1): 403-433.

Tharanathan, R.N. 2003. Biodegradable films and composite coatings: Past, present and future. Trends in Food Science and Technology 14(3): 71-78.

Ustunol, Z. 2009. Edible Films and Coatings for Food Applications: Edible Films and Coatings for Meat and Poultry. Germany: Springer Science + Business Media. pp. 245-268.

Vieira, M.G.A., da Silva, M.A., dos Santos, L.O. & Beppu, M.M. 2011. Natural-based plasticizers and biopolymer films: A review. European Polymer Journal 47(3): 254-263.

Zeng, S., Kapur, A., Patankar, M.S. & Xiong, M.P. 2015. Formulation, characterization, and antitumor properties of trans- and cis-citral in the 4T1 breast cancer xenograft mouse model. Pharmaceutical Research 32(8): 2548-2558.


*Corresponding author; email:
farhana2876@uitm.edu.my

 

 

 

previous