Sains Malaysiana 51(6)(2022): 1687-1696

http://doi.org/10.17576/jsm-2022-5106-07

 

Diversity and Antibacterial and Antioxidant Activities of Fungal Endophytes from the Roots of Eucalyptus deglupta

(Kepelbagaian serta Aktiviti Antibakteria dan Antioksidan Endofit Kulat daripada Akar Eucalyptus deglupta)

 

WEI WANG†,1, ZILING MAO†,1, CHUNYIN WU1, HAMZA SHAHID1, SHENGKUN WANG2,* & TIJIANG SHAN1

 

1College of Forestry and Landscape Architecture, South China Agricultural University, Guangdong Guangzhou, 510642, China

2Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, China

 

Received: 1 January 2021/Accepted: 22 November 2021

 

ABSTRACT

In this study, 45 endophytic fungal strains were isolated from the roots of Eucalyptus deglupta. Among them, 16 distinct strains were identified and classified into 14 different genera (Celoporthe, Aspergillus, Castanediella, Chaetomium, Biscogniauxia, Sordariales, Pestalotiopsis, Clitopilus, Cylindrocladiella, Calonectria, Trichoderma, Xylaria, Neofusicoccum and Pleosporales) according to their morphological characteristics and molecular information. The genera Aspergillus and Calonectria were the dominant endophytic fungi in the roots of E. deglupta. In addition, the antibacterial and antioxidant activities of the 16 endophytic fungi isolated from the roots of E. deglupta were evaluated. All the strains displayed inhibitory activities against Agrobacterium tumefaciens, Bacillus subtilis, Escherichia coli, and Xanthomonas vesicatoria. Strains Edf-1 to Edf-4, Edf-11 and Edf-12 demonstrated strong inhibitory activity against R. solanacearum with plaque diameters between 5 and 10 mm. The crude extract of Edf-14 had inhibitory activity against all tested bacteria. Five strains, Edf-1 to Edf-5, demonstrated a strong scavenging capacity for 2,2-diphenyl-1-picrylhydrazyl (DPPH), with IC50 values of 0.26 ± 0.04, 0.11 ± 0.03, 0.20 ± 0.05, 0.10 ± 0.04 and 0.14 ± 0.02 mg/mL, respectively. Hence, endophytic fungi isolated from the roots of E. deglupta showed antibacterial and antioxidant activities, providing a theoretical foundation for further isolation and identification of specific active components.

 

Keywords: Antibacterial activity; antioxidant activity; crude extracts; endophytic fungi; Eucalyptus deglupta

 

ABSTRAK

Dalam kajian ini, 45 strain kulat endofit telah dipencilkan daripada akarEucalyptus deglupta. Sejumlah 16 strain yang ternyata berbeza di antaranya telah dikenal pasti dan dikelaskan kepada 14 genera berbeza (Celoporthe, Aspergillus, Castanediella, Chaetomium, Biscogniauxia, Sordariales, Pestalotiopsis, Clitopilus, Cylindrocladiella, Calonectria, Trichoderma, Xylaria, Neofusicoccum dan Pleosporales) berdasarkan ciri morfologi dan maklumat molekul. Genera Aspergillus dan Calonectria adalah kulat endofit yang dominan dalam akar E. deglupta. Di samping itu, aktiviti antibakteria dan antioksidan bagi kesemua 16 kulat endofit yang dipencilkan daripada akarE. deglupta telah dinilai. Kesemua strain menunjukkan aktiviti perencatan terhadapAgrobacterium tumefaciens, Bacillus subtilis, Escherichia coli dan Xanthomonas vesicatoria. Strain Edf-1 hingga Edf-4, Edf-11 dan Edf-12 telah menunjukkan aktiviti perencatan yang kuat terhadapR. solanacearum dengan menghasilkan plak berdiameter antara 5 dan 10 mm. Ekstrak kasar Edf-14 mempunyai aktiviti perencatan terhadap semua bakteria yang diuji. Sebanyak lima strain iaitu Edf-1 hingga Edf-5 telah menunjukkan kapasiti penghapusan radikal yang kuat oleh 2,2-difenil-1-pikrylhidrazil (DPPH), dengan IC50 masing-masing bernilai 0.26 ± 0.04, 0.11 ± 0.03, 0.20 ± 0.05, 0.104, 0.104 dan 0.11. 0.14 ± 0.02 mg/mL. Oleh itu, kulat endofit yang dipencilkan daripada akarE. deglupta telah menunjukkan aktiviti antibakteria dan antioksidan yang menyediakan asas teori bagi kajian lanjutan untuk memencilkan dan mengenal pasti komponen aktif yang khusus.

 

Kata kunci: Aktiviti antibakteria; aktiviti antioksidan; ekstrak mentah; Eucalyptus deglupta; kulat endofit

 

References

Ainsworth, G.C., Sparrow, F.K. & Sussman, A.S. 1973. A taxonomic review with keys ascomycetes and fungi imperfecti. In The Fungi, An Advanced Treatise. 4th ed. New York: Academic Press. pp. 100-121.

Chi, W.C., Pang, K.L., Chen, W.L., Wang, G.J. & Lee, T.H. 2019. Antimicrobial and iNOS inhibitory activities of the endophytic fungi isolated from the mangrove plant Acanthus ilicifoliusvar. xiamenensis. Botanical Studies 60(1): 1-8.

El-Rokiek, K.G., Dawood, M.G., Sadak, M.S. & El-Awadi, M.E.I.S. 2019. The effect of the natural extracts of garlic or Eucalyptus on the growth, yield and some chemical constituents in quinoa plants. Bulletin of the National Research Centre 43(1): 1-7.

Ferdous, K.J., Afroz, F., Islam, M.R., Mazid, M.A. & Sohrab, M.H. 2019. Isolated endophytic fungi from the plant Curcuma longa and their potential bioactivity - A review. Pharmacology & Pharmacy 10(5): 244-270.

Hata, K. & Futai, K. 1995. Endophytic fungi associated healthy pine needles infested by the pine needle gall midge, Thecodiplosis japonensis. Canadian Journal of Botany 73(3): 384-390.

Jacobo-Velázquez, D.A. & Cisneros-Zevallos, L. 2020. Bioactive phenolics and polyphenols: Current advances and future trends. International Journal of Molecular Sciences 21(17): 6142.

Jiang, W., Ye, P.P., Arthur Chen, C.T., Wang, K.W., Liu, P.Y., He, S., Wu, X.D., Gan, L.S., Ye, Y. & Wu, B. 2013. Two novel hepatocellular carcinoma cycle inhibitory cyclodepsipeptides from a hydrothermal vent crab-associated fungus Aspergillus clavatusC2WU. Marine Drugs 11(12): 4761-4772.

Kaaniche, F., Hamed, A., Abdel-Razek, A.S., Wibberg, D., Abdissa, N., EI Euch, I.Z., Allouche, N., Mellouli, L., Shaaban, M. & Sewald, N. 2019. Bioactive secondary metabolites from new endophytic fungus Curvularia. sp isolated from Rauwolfia macrophylla. PLoS ONE 14(6): e0217627.

Kim, J.W. & Shim, S.H. 2019. The fungus Colletotrichum as a source for bioactive secondary metabolites. Archives of Pharmacal Research 42(9): 735-753.

Miao, F.P., Zuo, J.C., Liu, X.G. & Ji, N.Y. 2019. Algicidal activities of secondary metabolites of marine macroalgal-derived endophytic fungi. Journal of Oceanology and Limnology 37(1): 112-121.

Miguel, P.S.B., Delvaux, J.C., de Oliveira, M.N.V., Moreira, B.C., Borges, A.C., Tótol, M.R., Neves, J.C.L. & Costa, M.D. 2017. Diversity and distribution of the endophytic fungal community in eucalyptus leaves. African Journal of Microbiology Research 11(3): 92-105.

Mollaei, S., Khanehbarndaz, O., Gerami-Khashal, Z. & Ebadi, M. 2019. Molecular identification and phytochemical screening of endophytic fungi isolated from Lithospermum officinale L. roots: A new source of shikonin. Phytochemistry 168(3): 112116.

Mohamadi, N., Sharififar, F., Pournamdari, M. & Ansari, M. 2018. A review on biosynthesis, analytical techniques, and pharmacological activities of trigonelline as a plant alkaloid. Journal of Dietary Supplements 15(2): 207-222.

Nasr, A., Khan, T.S. & Zhu, G.P. 2019. Phenolic compounds and antioxidants from Eucalyptus camaldulensis as affected by some extraction conditions, a preparative optimization for GC-MS analysis. Preparative Biochemistry and Biotechnology 49(5): 1-13.

Nwabor, O.F., Vongkamjan, K. & Voravuthikunchai, S.P. 2019. Antioxidant properties and antibacterial effects of Eucalyptus camaldulensis ethanolic leaf extract on biofilm formation, motility, hemolysin production, and cell membrane of the foodborne pathogen Listeria monocytogenes. Foodborne Pathogens and Disease 16(8): 581-589.

Ouyang, J.K., Wu, C.Y., Wang, Y.Y., Zhang, C.B., Mao, Z.L. & Shan, T.J. 2020. Identification of endophytic fungus Chaetomium sp. Eef-10 from Eucalyptus exsertaand analysis of its active ingredients. Journal of South China Agricultural University 41(2): 104-110.

Ouyang, J.K., Mao, Z.L., Guo, H., Xie, Y.Y., Cui, Z.H., Sun, J., Wu, H.X., Wen, X.J., Wang, J. & Shan, T.J. 2018. Mollicellins O-R, four new depsidones isolated from the endophytic fungus Chaetomium sp. Eef-10. Molecules 23(12): 3218.

Palanichamy, P., Krishnamoorthy, G., Kannan, S. & Marudhamuthu, M. 2018. Bioactive potential of secondary metabolites derived from medicinal plant endophytes. Egyptian Journal of Basic and Applied Sciences 5(4): 303-312.

Pansanit, A. & Pripdeevech, P. 2018. Antibacterial secondary metabolites from an endophytic fungus, Arthrinium sp. MFLUCC16-1053 isolated from Zingiber cassumunar. Mycology 9(4): 264-272.

Patel, K., Gadewar, M., Tripathi, R., Prasad, S.K. & Patel, D.K. 2012. A review on medicinal importance, pharmacological activity and bioanalytical aspects of beta-carboline alkaloid ''Harmine''. Asian Pacific Journal of Tropical Biomedicine 2(8): 660-664.

Sahni, T., Sharma, S., Arora, G. & Verma, D. 2020. Synthesis, characterization and antifungal activity of a substituted coumarin and its derivatives. Pesticide Research Journal 32(1): 39-48.

Shan, T.J., Feng, H., Xie, Y.Y., Shao, C., Wang, J. & Mao, Z.L. 2019. Endophytic fungi isolated from Eucalyptus citriodora Hook. f. and the antibacterial activity of their crude extracts. Plant Protection 45(6): 149-155.

Shan, T.J., Zhang, W., Wang, S., Bai, R., Weng, D., Lin, X. & Sun, J. 2018. Detection of the active ingredients from 26 plants using TLC-bioautography assay. Plant Protection 44(6): 66-72.

Shang, Z.C., Han, C., Xu, J.L., Liu, R.H., Yin, Y., Wang, X.B., Yang, M.H. & Kong, L.Y. 2019. Twelve formyl phloroglucinol meroterpenoids from the leaves of Eucalyptus robusta. Phytochemistry 163: 111-117.

Song, Q., Li, X.M., Hu, X.Y., Li, X., Chi, L.P., Li, H.L. & Wang, B.G. 2019. Antibacterial metabolites from Ascidian-derived fungus Aspergillus clavatusAS-107. Phytochemistry Letters 34: 30-34.

Syukri, D.M., Nwabor, O.F., Singh, S., Ontong, J.C., Wunnoo, S., Paosen, S., Munah, S. & Voravuthikunchai, S.P. 2020. Antibacterial-coated silk surgical sutures by ex situ deposition of silver nanoparticles synthesized with Eucalyptus camaldulensiseradicates infections. Journal of Microbiological Methods 174: 105955.

Tantapakul, C., Promgool, T., Kanokmedhakul, K., Soytong, K., Song, J.J., Hadsadee, S., Jungsuttiwong, S. & Kanokmedhakul, S. 2020. Bioactive xanthoquinodins and epipolythiodioxopiperazines from Chaetomium globosum 7s-1, an endophytic fungus isolated from Rhapis cochinchinensis (Lour.) Mart. Natural Product Research 34(4): 494-502.

Tiwari, A., Singh, P., Jaitley, P., Sharma, S., Prakash, A., Mandil, R., Choudhury, S., Gangwar, N.K. & Garg, S.K. 2018. Eucalyptus robusta leaves methanolic extract suppresses inflammatory mediators by specifically targeting TLR4/TLR9, MPO, COX2, iNOS and inflammatory cytokines in experimentally-induced endometritis in rats. Journal of Ethnopharmacology 213: 149-158.

Wang, Z.C., Jia, S.T., Cui, J.W., Qu, J.H., Yue, Y.Y., Sun, Q. & Zhang, H.R. 2019. Antioxidant activity of a polysaccharide produced by Chaetomium globosum CGMCC 6882. International Journal of Biological Macromolecules 141(1): 955-960.

Wang, Y., Arnold, R., Li, G.Q., Xie, Y.J. & Zhou, X.D. 2014. Identification and rapid detection of bacterial wilt in plantation Eucalyptus in China. Australian Forestry 77(2): 133-139.

Wu, X.L., Wang, S., Liu, C., Zhang, C.F., Guo, J.J. & Shang, X.Y. 2019. A new 2H‑benzindazole compound from Alternaria alternataShm‑1, an endophytic fungus isolated from the fresh wild fruit of Phellinus igniarius. Journal of Natural Medicines 73(3): 620-626.

Yao, C., Bai, H.H., Zhang, Q., Qian, X.Q., Zhang, X., Wu, L.W., Yang, T. & Li, G.Y. 2019. Secondary metabolites from the fungus Chaetomium elatumCIB-412. Chemistry of Natural Compounds 55(5): 899-901.

Ye, D.H., Li, T.X., Yi, Y.J., Zhang, X.Z. & Zou, L.K. 2019. Characteristics of endophytic fungi from Polygonum hydropiper suggest potential application for P-phytoextraction. Fungal Ecology 41: 126-136.

Yuan, T., Zhang, C.Y., Qiu, C.Y., Xia, G.Y., Wang, F., Lin, B., Li, H. & Chen, L.X. 2018. Chemical constituents from Curcuma longa L. and their inhibitory effects of nitric oxide production. Natural Product Research 32(16): 1887-1892.

Zhao, L., Kim, J.C., Paik, M.J., Lee, W.J. & Hur, J.S. 2017. A multifunctional and possible skin UV protectant, (3R)-5-Hydroxymellein, produced by an endolichenic fungus isolated from Parmotrema austrosinense. Molecules 22(1): 26.

 

*Corresponding author; email: wskun2001@163.com

 

previous