Sains Malaysiana 51(6)(2022): 1733-1751

http://doi.org/10.17576/jsm-2022-5106-11

 

Study on the Anti-Inflammatory Mechanism of Volatile Components of Hebei Aster tataricus Before and After Honey-Fried Based on Gas Chromatography-Mass Spectrometry and Network Pharmacology

(Kajian Mekanisme Anti-Radang Komponen Meruap Hebei Aster tataricus Sebelum dan Selepas Digoreng dengan Madu Berdasarkan Kromatografi Gas-Spektrometri Jisim dan Farmakologi Rangkaian)

 

LIJUAN LV1, XIANGPEI WANG2, HONGMEI WU1,*, KE ZHONG1 & FENG XU1

 

1Department of Pharmacognosy, Guizhou University of Traditional Chinese Medicine,

Guiyang, Guizhou, China

2National Medical College, Guizhou Minzu University, Guiyang, Guizhou, China

 

Received: 27 July 2021/Accepted: 2 November 2021

 

Abstract

Aster tataricus (AT) and honey-fried Aster tataricus (HAT) have a significant effect on relieving cough and reducing sputum, both of which contain many volatile components. Studies have shown that the volatile components of AT and HAT may have an anti-inflammatory effect, but the mechanism is unclear. This study aimed to analyze the daodi herb of Hebei AT and HAT qualitatively and quantitatively using gas chromatography-mass spectrometry and systematically explored the similarities and differences of anti-inflammatory molecular mechanisms of volatile components Hebei AT and HAT by using network pharmacology. These results indicate that there are significant differences in volatile compositions and percentage contents between AT and HAT. Moreover, the anti-inflammatory mechanism of volatile components of Hebei AT and HAT have more prominent similarities and fewer differences. AT and HAT's similar potential active components such as humulene,γ-muurolene, α-phellandrene, and acetic acid were nine. The similar key gene targets were forty-seven, such as CAT, GAPDH, HMOX1, and CTH. The potential active ingredients peculiar to HAT were furfural, β-elemene, methyleugenol, and unique targets of EIF6 and PKIA. It suggests that HAT had its characteristics in clinical anti-inflammatory. Their active anti-inflammatory components and percentage contents were different, and HAT was higher than that of AT. The anti-inflammatory effect of volatile components of HAT may be better than that of AT. These results provide a theoretical basis for the study of the anti-inflammatory molecular mechanism of AT and HAT.

 

Keywords: Anti-inflammatory; Aster tataricus; honey-fried; volatile components

 

Abstrak

Aster tataricus (AT) dan Aster tataricus (HAT) goreng madu mempunyai kesan yang ketara bagi melegakan batuk dan mengurangkan kahak, kedua-duanya mengandungi banyak komponen yang meruap. Kajian telah menunjukkan bahawa komponen meruap AT dan HAT mungkin mempunyai kesan anti-radang, tetapi mekanismenya tidak jelas. Kajian ini bertujuan untuk menganalisis herba daodi Hebei AT dan HAT secara kualitatif dan kuantitatif menggunakan kromatografi gas-spektrometri jisim dan secara sistematik bagi meneroka persamaan dan perbezaan mekanisme molekul anti-radang komponen meruap Hebei AT dan HAT dengan menggunakan farmakologi rangkaian. Keputusan menunjukkan bahawa terdapat perbezaan yang signifikan dalam komposisi komponen meruap dan kandungan peratusan antara AT dan HAT. Selain itu, mekanisme anti-radang komponen yang meruap pada Hebei AT dan HAT mempunyai lebih banyak persamaan dan hanya sedikit perbezaan. Komponen sama aktif berpotensi AT dan HAT seperti humulena, γ-muurolene, α-phellandrene dan asid asetik adalah sembilan. Sasaran gen utama yang sama ialah empat puluh tujuh, seperti CAT, GAPDH, HMOX1 dan CTH. Bahan aktif yang berpotensi khusus untuk HAT ialah furfural, β-elemene, metileugenol dan sasaran unik EIF6 dan PKIA. Ia menunjukkan bahawa HAT mempunyai ciri-cirinya dalam anti-radang klinikal. Komponen anti-radang aktif dan kandungan peratusannya berbeza dan HAT lebih tinggi daripada AT. Kesan anti-radang komponen meruap pada HAT lebih baik daripada AT. Keputusan ini memberikan asas teori untuk kajian mekanisme molekul anti-radang AT dan HAT.

 

Kata kunci: Anti-radang; Aster tataricus; goreng madu; komponen yang meruap

 

REFERENCES

Bai, Z.Q., Yao, C.S., Zhu, J.L. & Xie, Y.Y. 2021. Anti-tumor drug discovery based on natural product β-elemene: Anti-tumor mechanisms and structural modification. Molecules 26(6): 1499.

Bonjardim, L.R., Cunha, E.S., Guimarães, A.G., Santana, M.F., Oliveira, M.G., Serafini, M.R., Araújo, A.A., Antoniolli, Â.R., Cavalcanti, S.C., Santos, M.R. & Quintans-Júnior, L.J. 2012. Evaluation of the anti-inflammatory and antinociceptive properties of p-cymene in mice. Zeitschrift für Naturforschung C 67(1-2): 15-21.

Chauhan, A.S., Kumar, M., Chaudhary, S., Patidar, A., Dhiman, A., Sheokand, N., Malhotra, H., Raje, C.I. & Raje, M. 2017. Moonlighting glycolytic protein glyceraldehyde-3-phosphate dehydrogenase (GAPDH): An evolutionarily conserved plasminogen receptor on mammalian cells. The Federation of American Societies for Experimental Biology Journal 31(6): 2638-2648.

Dutta, P., Sahu, R.K., Dey, T., Lahkar, M.D., Manna, P. & Kalita, J. 2019. Beneficial role of insect-derived bioactive components against inflammation and its associated complications (colitis and arthritis) and cancer. Chemico-Biological Interactions 313(2019): 108824.

Ebtehal, E. 2011. Anti-inflammatory and antifibrotic effects of methyl palmitate. Toxicology and Applied Pharmacology 254(3): 238-244.

Fang, H.Y., Shan, G.W., Qin, G.F., Zhen, L., Li, M.H. & Hao, L.J. 2012. Advances on chemical components and pharmacological actions of Aster tataricus. Medical Research and Education 29(5): 73-77.

Feng, T., Feilong, C., Xiao, L., Huang, Y., Zheng, X., Tang, Q. & Tan, X. 2015. Inhibitory effect of methyleugenol on IgE-mediated allergic inflammation in RBL-2H3 cells. Mediators of Inflammation 2015: 463530.

Fink, T., Wolf, A., Maurer, F., Albrecht, F.W., Nathalie, H., Beate, W., Hauschild, A.C., Bertram, B., Baumbach, J.I. & Thomas, V. 2015. Volatile organic compounds during inflammation and sepsis in rats: A potential breath test using ion-mobility spectrometry. Anesthesiol 122(1): 117-126.

Gong, Q.F. 2016. Traditional Chinese Medicine Processing: Chapter XII. Beijing: China Press of Traditional Chinese Medicine.

Guo, C., Kang, X.D., Cao, F., Yang, J. & Fu, X. 2021. Network pharmacology and molecular docking on the molecular mechanism of Luo-Hua-Zi-Zhu (LHZZ) granule in the prevention and treatment of bowel precancerous lesions. Frontiers in Pharmacology 12: 1-14.

Huang, X., Gao, Y., Xu, F., Fan, D. & Wu, H. 2020. Molecular mechanism underlying the anti-inflammatory effects of volatile components of Ligularia fischeri (Ledeb) Turcz based on network pharmacology. BMC Complementary Medicine and Therapies 20(1): 1-13.

Labib, R.M., Youssef, F.S., Ashour, M.L., Abdel-Daim, M.M. & Ross, S.A. 2017. Chemical composition of Pinus roxburghii bark volatile oil and validation of its anti-inflammatory activity using molecular modelling and bleomycin-induced inflammation in albino mice. Molecules 22(9): 1384.

Li, C., Huang, F., Dou, C.G., Zhang, M. & Ma, S.P. 2009. Effect of compatibility of Aster tataricus and Flos Farfarae on anti-inflammation. Chinese Journal of Clinical Pharmacology and Therapeutics 14(2): 155-159.

Li, M.Q., Luo, L., Shang, N.N., Meng, B.H. & Huang, H.Z. 2020. Contradictions and countermeasures from cultural inheritance to industrial modernization. Chinese Traditional Patent Medicine 42(11): 2999-3003.

Li, P., Wang, J., Wang, C., Cheng, L. & Zhao, B. 2021. Therapeutic effects and mechanisms study of Hanchuan Zupa Granule in a guinea pig model of cough variant asthma. Journal of Ethnopharmacology 269(6): 113719.

Li, S.M., Zeng, B.Y., Ye, Q., Ao, H. & Li, H.X. 2015. Correlation analysis between GC-MS fingerprint of essential oil of amomi fructus and antiinflammatory activity. Chinese Journal of Experimental Traditional Medical Formulae 21(9): 133-136.

Lin, Z.X. 2011. Benzylamine and methylamine, substrates of semicarbazide-sensitive amine oxidase, attenuate inflammatory response induced by lipopolysaccharide. Thesis. Shantou University (Unpublished).

Lin, Y.M., Badrealam, K.F., Kuo, W.W., Lai, P.F., Chen, W.S., Day, C.H., Ho, T.J., Viswanadha, V.P., Shibu, M.A. & Huang, C.Y. 2020. Nerolidol improves cardiac function in spontaneously hypertensive rats by inhibiting cardiac inflammation and remodelling associated TLR4/ NF-κB signalling cascade. Food and Chemical Toxicology 147(2021): 111837.

McGarry, T., Biniecka, M., Gao, W., Cluxton, D., Canavan, M., Wade, S., Wade, S., Gallagher, L., Orr, C., Veale, D.J. & Fearon, U. 2017. Resolution of TLR2-induced inflammation through manipulation of metabolic pathways in Rheumatoid Arthritis. Scientific Reports 7: 43165.

National Pharmacopoeia Commission. 2020. The Pharmacopoeia of the People's Republic of China: Part I. Beijing: China Medical Science and Technology Press.

Ninomiya, K., Hayama, K., Ishijima, S.A., Maruyama, N., Irie, H., Kurihara, J. & Abe, S. 2013. Suppression of inflammatory reactions by terpinen-4-ol, a main constituent of tea tree oil, in a murine model of oral candidiasis and its suppressive activity to cytokine production of macrophages in vitroBiological and Pharmaceutical Bulletin 36(5): 838-844.

Pang, X.T., Zhang, Y.Y., Leng, Y.F., Yao, Y., Zhang, R., Wang, D.W., Xu, X. & Sun, Z.L. 2021. Metabolomics study of biochemical changes in the serum and articular synovium tissue of moxibustion in rats with collagen-induced arthritis. World Journal of Acupuncture-Moxibustion 31(1): 30-43.

Petelin, M., Pavlica, Z., Ivanuša, T., Šentjurc, M. & Skalerič, U. 2000. Local delivery of liposome‐encapsulated superoxide dismutase and catalase suppress periodontal inflammation in beagles. Journal of Clinical Periodontology 27(12): 918-925.

Ping, J., Hao, L. & Xiao, L. 2015. Diabetes mellitus risk factors in rheumatoid arthritis: A systematic review and meta-analysis. Clinical and Experimental Rheumatology 33(1): 115-121.

Queiroz, J.C.C., Antoniolli, Â.R., Quintans-Júnior, L.J., Brito, R.G., Barreto, R.S., Costa, E.V., da Silva, T.B., Prata, A.P.N., de Lucca, W., Almeida, J.R. & Lima, J.T. 2014. Evaluation of the anti-inflammatory and antinociceptive effects of the essential oil from leaves of Xylopia laevigata in experimental models. The Scientific World Journal 2014: 816450.

Riggle, K.M., Riehle, K.J., Kenerson, H.L., Turnham, R., Homma, M.K., Kazami, M., Samelson, B., Bauer, R., McKnight, G.S. & Scott, J.D. 2016. Enhanced cAMP-stimulated protein kinase A activity in human fibrolamellar hepatocellular carcinoma. Pediatric Research 80: 110-118.

Saeed, N.M., Ebtehal, E.D., Hanaa, M.A., Algandaby, M.M., Fahad, A.A. & Ashraf, B.A. 2012. Anti-inflammatory activity of methyl palmitate and ethyl palmitate in different experimental rat models. Toxicology and Applied Pharmacology 264(1): 84-93.

Santos, K.B., Guedes, I.A., Karl, A.L. & Dardenne, L.E. 2020. Highly flexible ligand docking: Benchmarking of the DockThor program on the LEADS-PEP protein–peptide data set. Journal of Chemical Information and Modeling 60(2): 667-683.

Sakhaee, M.H., Sayyadi, S.A.H., Sakhaee, N., Sadeghnia, H.R., Hosseinzadeh, H., Nourbakhsh, F. & Forouzanfar, F. 2020. Cedrol protects against chronic constriction injury-induced neuropathic pain through inhibiting oxidative stress and inflammation. Metabolic Brain Disease 35(7): 1119-1126.

Sousa, C., Leitão, A.J., Neves, B.M., Judas, F., Cavaleiro, C. & Mendes, A.F. 2020. Standardized comparison of limonene-derived monoterpenes identifies structural determinants of anti-inflammatory activity. Scientific Reports 10(1): 7199.

Su, G.Y. & Liu, Y. 2011. Production process of Aster tataricus and honey-fried Aster tataricus. Capital Medicine 18(3): 49.

Wen, S., Hu, X.H., Zhang, X.R. & Huang, Y. 2015. Effects of eIF6 on the expression of pro-inflammatory mediators derived from M2 macrophages. Medical Journal of Chinese People's Liberation Army 40(2): 104-109.

Wu, C., Chen, Z.J., Hu, Y.J., Xiu, Y.F. & Cheng, X.M. 2006. Experimental study on phlegm-resolving action of different prepared products of radix Asteris. Journal of Shanghai University of Traditional Chinese Medicine 20(3): 55-57.

Yang, Q., Luo, J., Lv, H., Wen, T. & Zeng, N. 2019. Pulegone inhibits inflammation via suppression of NLRP3 inflammasome and reducing cytokine production in mice. Immunopharmacology and Immunotoxicology 41(3): 1-8.

Zhang, H.P., Li, D.X. & Zhou, Y. 2017. Anti-inflammatory, antitussive, expectorant and analgesic effects of volatile oil from Uighur medicine Hyssopus officinalis. China Pharmacist 20(2): 221-224.

Zhang, R.W., Tian, A., Shi, X.G. & Yu, H.M. 2010. Downregulation of IL-17 and IFN-γ in the optic nerve by β-elemene in experimental autoimmune encephalomyelitis. International Immunopharmacology 10(7): 738-743.

 

*Corresponding author; email: whm0425@126.com

 

 

previous