Sains Malaysiana 51(6)(2022): 1775-1787

http://doi.org/10.17576/jsm-2022-5106-14

 

Molecular Interaction Study on a New Application of Ionic Liquids as Dissolver Toward Carbonate Scale

(Kajian Interaksi Molekul terhadap Aplikasi Baharu Cecair Ion sebagai Pelarut kepada Skala Kalsium Karbonat)

 

MUHAMMAD SUHAIMI MAN1, ALVIN TEO HUA HUANG1, SYAMSUL B. ABDULLAH1,*, HANIDA ABDUL AZIZ2, MOHD HASBI AB RAHIM2, SAIFFUL KAMALUDDIN MUZAKIR2 & NORWAHYU JUSOH3

 

1Faculty of Chemical & Process Engineering Technology, Universiti Malaysia Pahang, 26300 Gambang, Pahang Darul Makmur, Malaysia

2Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang, 26300 Gambang, Pahang Darul Makmur, Malaysia

3CO2 Research Centre (CO2, RES), R&D Building, Universiti Teknologi PETRONAS, 32610 Bandar Seri Iskandar, Perak Darul Ridzuan, Malaysia

 

Received: 21 July 2021/Accepted: 1 November 2021

 

Abstract

Latest advances of ionic liquids (ILs) have allowed to a new application on the dissolution of calcium carbonate (CaCO3) scales where the CaCO3 scale deposition have seriously severe threat in the petroleum field. In this study, the molecular interaction between CaCO3 and ILs n-pyridinium chloride [NPy][Cl] was studied experimentally in order to get a better understanding during the dissolution of scale. NMR and FTIR spectroscopy was used to study the molecular interaction between CaCO3 and [NPy][Cl] solution during the dissolution process. To further evaluate the result, the simulation study using Gaussian software was utilized to predict in detail the molecular interaction between [Npy][Cl] and CaCO3. The finding from this study showed that the metal complex was formed via ligand after dissolution scale process. Based on the findings, it can be clinched that [Npy][Cl] has potential to be used as a scale dissolver in the oilfield, especially in dissolving calcium carbonate scales.

 

Keywords: Calcium carbonate; dissolution; ionic liquids; molecular interaction

 

Abstrak

Kemajuan terkini cecair ion (ILs) telah membolehkan aplikasi baharu terhadap pembubaran mendakan pelarutan kalsium karbonat (CaCO3) dengan mendakan CaCO3 memberi ancaman yang buruk dalam bidang petroleum. Dalam kajian ini, interaksi molekul antara CaCO3 dan ILs n-piridinium klorida [NPy][Cl] telah dikaji untuk mendapatkan pemahaman yang lebih menyeluruh semasa pembubaran mendakan. Spektroskopi NMR dan FTIR digunakan untuk mengkaji interaksi molekul antara larutan CaCO3 dan [NPy][Cl] semasa proses pembubaran. Untuk penilaian selanjutnya, kajian simulasi menggunakan perisian Gaussian telah digunakan untuk meramal secara terperinci interaksi molekul antara [Npy][Cl] dan CaCO3. Hasil daripada kajian ini menunjukkan bahawa kompleks logam terbentuk melalui ligan selepas proses mendakan pelarutan. Berdasarkan hasil kajian, dapat dipastikan bahawa [Npy][Cl] berpotensi untuk digunakan sebagai pelarut mendakan dalam medan minyak, terutamanya dalam melarutkan mendakan CaCO3.

 

Kata kunci: Cecair ion; interaksi molekul; kalsium karbonat; pembubaran

 

REFERENCES

Ammawath, W., Man, Y.B.C., Baharin, B.S. & Rahman, R.B.A. 2004. A new method for determination of tert-butylhydroquinone (TBHQ) in RBD palm olein with FTIR spectroscopy. Journal of Food Lipids 11(4): 266-277.

Becke, A.D. 1993. Density functional thermochemistry III. The role of exact exchange. Journal of Chemical Physics 98: 5648.

Fischer, S.A., Crotty, A.M., Kilina, S.V., Ivanov, S.A. & Tretiak, S. 2012. Passivating ligand and solvent contributions to the electronic properties of semiconductor nanocrystals. Nanoscale 4(3): 904-914.

Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery Jr., J.A., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J. & Fox, D.J. 2010. Gaussian 16 Rev B.01 Release Notes. Gaussian 09. Wallingford, CT: Gaussian Inc.

Garba, M.D. & Sulaiman, M.S. 2014. Oilfield scales treatment and managerial measures in the fight for sustainable production. Petroleum Technology Development Journal 2: 19-37.

Grabda, M., Panigrahi, M., Oleszek, S., Kozak, D., Eckert, F., Shibata, E. & Nakamura, T. 2014. COSMO-RS Screening for efficient ionic liquid extraction solvents for NdCl3 and DyCl3. Fluid Phase Equilibria 383: 134-143.

Han, J., Dai, C., Yu, G. & Lei, Z. 2018. Parameterization of COSMO-RS model for ionic liquids. Green Energy & Environment 3(3): 247-265.

Hay, P.J. & Wadt, W.R. 1985. Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. The Journal of Chemical Physics 82(1): 270-283.

Kaur, P. & Prakash, G. 2016. Molecular interactions in 2-Isopropoxy ethanol + alcohols: A thermo-physical and spectroscopic approach. Journal of Molecular Liquids 218(C): 246-254.

Khan, I., Taha, M., Pinho, S.P. & Coutinho, J.A.P. 2016a. Interactions of pyridinium, pyrrolidinium or piperidinium based ionic liquids with water: Measurements and COSMO-RS modelling. Fluid Phase Equilibria 414: 93-100.

Khan, M.S., Liew, C.S., Kurnia, K.A., Cornelius, B. & Lal, B. 2016b. Application of COSMO-RS in investigating ionic liquid as thermodynamic hydrate inhibitor for methane hydrate. Procedia Engineering 148: 862-869.

Kohno, Y. & Ohno, H. 2012. Temperature-responsive ionic liquid/water interfaces: Relation between hydrophilicity of ions and dynamic phase change. Physical Chemistry Chemical Physics 14(15): 5063-5070.

Kumar, S., Naiya, T.K. & Kumar, T. 2018. Developments in oilfield scale handling towards green technology: A review. Journal of Petroleum Science Engineering 169: 428-444.

Lee, C., Yang, W. & Parr, R.G. 1988. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B 37(2): 785.

Li, L., Nasr-El-Din, H.A., Chang, F.F. & Lindvig, T. 2008. Reaction of simple organic acids and chelating agents with calcite. In International Petroleum Technology Conference. IPTC. pp. 1-15.

Maginn, E.J. 2009. Molecular simulation of ionic liquids: Current status and future opportunities.  Journal of Physics: Condensed Matter 21(37): 373101.

Majstorović, D.M., Živković, E.M., Mitrović, A.D., Munćan, J.S. & Kijevčanin, M.L. 2016. Volumetric and viscometric study with FT-IR analysis of binary systems with diethyl succinate and alcohols. Journal of Chemical Thermodynamics 101: 323-336.

Moghadasi, J., Jamialahmadi, M., Müller-Steinhagen, H. & Sharif, A. 2003. Scale formation in oil reservoir and production equipment during water injection (kinetics of CaSO4 and CaCO3 crystal growth and effect on formation damage). In SPE European Formation Damage Conference. SPE International. pp. 1-12.

Muzakir, S.K., Alias, N., Yusoff, M.M. & Jose, R. 2013. On the missing links in quantum dot solar cells: A DFT study on fluorophore oxidation and reduction processes in sensitized solar cells. Physical Chemistry Chemical Physics 15(38): 16275-16285.

Qiao, Y., Ma, W., Theyssen, N., Chen, C. & Hou, Z. 2017. Temperature-responsive ionic liquids: Fundamental behaviors and catalytic applications. Chemical Reviews 117(10): 6881-6928.

Rahul, D., Sankar, M.G., Chand, G.P. & Ramachandran, D. 2015. Studies of physical properties on molecular interactions in binary liquid mixtures of 3-chloroaniline with isomeric butanols at different temperatures. Journal of Molecular Liquids 211: 386-394.

Ramones, M., Rachid, R., Flor, D., Gutierrez, L. & Milne, A. 2015. Removal of organic and inorganic scale from electric submersible pumps. In SPE Artificial Lift Conference - Latin, America and Caribbean. SPE International. pp. 27-28.

Refaei, M.I. & Al-Kandari, A.K. 2009. Oil fields scale deposition prediction methodology. In Kuwait International Petroleum Conference and Exhibition. SPE International. pp. 1-22.

Silverstein, R.M., Webster, F.X. & Kiemle, D.J. 2006. Spectrometric Identification of Organic Compounds. 7th ed. New York: John Wiley & Sons, Inc.

Tomé, L.I.N., Jorge, M., Gomes, R.B. & Coutinho, J.A.P. 2012. Molecular dynamics simulation studies of the interactions between ionic liquids and amino acids in aqueous solution. Journal of Physical Chemistry B 116(6): 1831-1842.

Zhao, Y., Wang, H., Pei, Y., Liu, Z. & Wang, J. 2016. Understanding the mechanism of LCST phase separation of mixed ionic liquids in water by MD simulations. Physical Chemistry Chemical Physics 18(33): 23238-23245.

 

*Corresponding author; email: syamsul@ump.edu.my

   

previous