Sains Malaysiana 51(9)(2022): 3027-3041

http://doi.org/10.17576/jsm-2022-5109-23

 

Investigation of Effect of Various Hot Gas Atomisation and Melting Pot Temperatures on Tin Alloy Powder Product

(Kajian Kesan Pelbagai Pengatoman Gas Panas dan Suhu Periuk Lebur pada Produk Serbuk Aloi Timah)

 

ABDUL BASYIR1,*, ROBBY KURNIA1, CHERLY FIRDHARINI1,2, DIDIK ARYANTO1, WAHYU BAMBANG WIDAYATNO1,3 & AGUS SUKARTO WISMOGROHO1,3

 

 

1Research Center for Physics, National Research and Innovation Agency, Indonesia

2Chemistry Department, Indonesia University, Indonesia
3Pusat Kolaborasi Riset Logam Timah, Indonesia

 

Received: 5 January 2022/Accepted: 23 April 2022

 

Abstract

This research investigates the effect of different types of hot gas atomisation (argon, nitrogen and oxygen) and melting pot temperatures on the particle size distribution, microstructure, density and phase of tin alloy (Sn-Cu-Ni-Ge) powder products. The tin alloy powder produced by hot argon gas atomisation had the greatest density (7.84 g/cm3) and the most spherical shape. While the tin alloy powder generated by hot oxygen gas atomisation had the lowest density (6.83 g/cm3), the highest endothermic area (60.41695 area unit) and the most elongated, irregular shape. Hot argon and nitrogen gas atomisation at a melting pot temperature of 800 °C produced a higher yield of 0-25 µm powder than at 700 °C. By contrast, hot oxygen atomisation produced the opposite result. However, all the powder products prepared at 800 °C had a higher spherical shape ratio in the range of 0-25 µm. Tin alloy powder produced by hot oxygen gas atomisation comprised only the elements of Sn and Cu, while the powder generated by hot argon and nitrogen gas atomisation consisted of elements such as the ingot of this powder.

 

Keywords: Density; hot gas atomization; microstructure; particle size; tin alloy powder

 

Abstrak

Penyelidikan ini mengkaji kesan pelbagai jenis pengatoman gas panas (argon, nitrogen dan oksigen) dan suhu periuk lebur pada taburan saiz zarah, struktur mikro, ketumpatan dan fasa produk serbuk aloi timah (Sn-Cu-Ni-Ge). Serbuk aloi timah yang dihasilkan oleh pengabusan gas argon panas mempunyai ketumpatan terbesar (7.84 g/cm3) dan bentuk paling sfera. Manakala serbuk aloi timah yang dijana melalui pengabusan gas oksigen panas mempunyai ketumpatan terendah (6.83 g/cm3), kawasan endoterma tertinggi (60.41695 unit kawasan) dan bentuk paling memanjang dan tidak sekata. Pengatoman argon panas dan gas nitrogen pada suhu periuk lebur 800 °C menghasilkan hasil serbuk 0-25 µm yang lebih tinggi daripada pada 700 °C. Sebaliknya, pengatoman oksigen panas menghasilkan keputusan yang bertentangan. Walau bagaimanapun, semua produk serbuk yang disediakan pada 800 °C mempunyai nisbah bentuk sfera yang lebih tinggi dalam julat 0-25 µm. Serbuk aloi timah yang dihasilkan melalui pengatoman gas oksigen panas hanya terdiri daripada unsur Sn dan Cu, manakala serbuk yang dihasilkan oleh pengatoman argon panas dan gas nitrogen terdiri daripada unsur seperti jongkong serbuk ini.

 

Kata kunci: Keamatan; mikrostruktur; pengatoman gas panas; serbuk timah paduan; ukuran zarah

 

REFERENCES

AkkaAkkas, M. & Boz, M. 2019. Investigation of the compressibility and sinterabilty of AZ91 powder production and particle production by gas atomisation method. Journal of Magnesium and Alloys 7(3): 400-413. https://doi.org/10.1016/j.jma.2019.05.007

Aksoy, A. & Ünal, R. 2006. Effects of gas pressure and protrusion length of melt delivery tube on powder size and powder morphology of nitrogen gas atomised tin powders. Powder Metallurgy 49(4): 349-354. https://doi.org/10.1179/174329006X89425

Anderson, I.E. & Terpstra, R.L. 2002. Progress toward gas atomization processing with increased uniformity and control. Materials Science and Engineering A 326(1): 101-109. https://doi.org/10.1016/S0921-5093(01)01427-7

Basyir, A., Aryanto, D., Wismogroho, A.S. & Widayatno, W.B. 2020. Effect of hot isostatic pressing method to enhance quality of tin powder. In AIP Conference Proceedings. AIP Publishing LLC. 2256(030021): 1-9. https://doi.org/10.1063/5.0014653

Chen, G., Zhao, S.Y., Tan, P., Wang, J., Xiang, C.S. & Tang, H.P. 2018. A comparative study of Ti-6Al-4V powders for additive manufacturing by gas atomization, plasma rotating electrode process and plasma atomization. Powder Technology 333: 38-46. https://doi.org/10.1016/j.powtec.2018.04.013

Chhabra, R.P. & Sheth, D.K. 1990. Viscosity of molten metals and its temperature dependence. International Journal of Material Research 81(4): 264-271. https://doi.org/10.1515/ijmr-1990-810408

Drellishak, K.S., Aeschliman, D.P. & Cambel, A.B. 1964. Tables of Thermodynamic Properties of Argon, Nitrogen, and Oxygen Plasmas. Illinois: Arnold Engineering Development Center.

Feng, G., Jiao, K., Zhang, J. & Gao, S. 2021. High-temperature viscosity of iron‑carbon melts based on liquid structure: The effect of carbon content and temperature. Journal of Molecular Liquids 330: 115603. https://doi.org/10.1016/j.molliq.2021.115603.

Gao, C.F., Xiao, Z.Y., Zou, H.P., Liu, Z.Q., Chen, J., Li, S.K. & Zhang, D.T. 2019. Characterization of spherical AlSi10Mg powder produced by double-nozzle gas atomization using different parameters. Transactions of Nonferrous Metals Society of China 29(2): 374-384. https://doi.org/10.1016/S1003-6326(19)64947-2

Gao, M.Z., Ludwig, B. & Palmer, T.A. 2021. Impact of atomization gas on characteristics of austenitic stainless steel powder feedstocks for additive manufacturing. Powder Technology 383: 30-42. https://doi.org/10.1016/j.powtec.2020.12.005

Huang, Z., Czisch, C., Schreckenberg, P., Büllesfeld, F. & Fritsching, U. 2006. Technical note: Powder production by gas atomization of bioglass melt. Particle and Particle Systems Characterization 22(5): 345-351. https://doi.org/10.1002/ppsc.200500966

Kaysser, W.A. & Weise, W. 2000. Powder metallurgy and sintered materials. Ullmann’s Encyclopedia of Industrial Chemistry. https://doi.org/10.1002/14356007.a22_105

Kong, C.J., Brown, P.D., Harris, S.J. & McCartney, D.G. 2007. Analysis of microstructure formation in gas-atomised Al-12 Wt.% Sn-1 Wt.% Cu alloy powder. Materials Science and Engineering A 454-455: 252-259. https://doi.org/10.1016/j.msea.2006.11.050

Metz, R., Machado, C., Houabes, M., Pansiot, J., Elkhatib, M., Puyanē, R. & Hassanzadeh, M. 2008. Nitrogen spray atomization of molten tin metal: powder morphology characteristics. Journal of Materials Processing Technology 189(1-3): 132-137. https://doi.org/10.1016/j.jmatprotec.2007.01.014

Minagawa, K., Kakisawa, H., Osawa, Y., Takamori, S. & Halada, K. 2005. Production of fine spherical lead-free solder powders by hybrid atomization. Science and Technology of Advanced Materials 6(3-4): 325-329. https://doi.org/10.1016/j.stam.2005.03.010

Neikov, O.D., Naboychenko, S.S. & Yefimov, N.A. 2009. Handbook of Non-Ferrous Metal Powders: Technologies and Applications, edited by Neikov, O.D., Naboychenko, S.S. & Dowson, G. Amsterdam: Elsevier Ltd.

Nishimura, S., Matsumoto, S. & Terashima, K. 2002. Variation of silicon melt viscosity with boron addition. Journal of Crystal Growth 237-239: 1667-1670. https://doi.org/10.1016/S0022-0248(01)02317-X

Özbilen, S., Ünal, A. & Sheppard, T. 1996. Influence of liquid metal properties on particle size of inert gas atomised powders. Powder Metallurgy 39(1): 44-52. https://doi.org/10.1179/pom.1996.39.1.44

Özbilen, S., Ünal, A. & Sheppard, T. 1989. Influence of oxygen on morphology and oxide content of gas atomized aluminium powders. In Physical Chemistry of Powder Metals: Production and Processing. pp. 489-505.

Pan, H., Ji, H., Liang, M., Zhou, J. & Li, M. 2019. Size-dependent phase transformation during gas atomization process of Cu-Sn alloy powders. Materials 12(2): 245-257. https://doi.org/10.3390/ma12020245

Plookphol, T., Wisutmethangoon, S. & Gonsrang, S. 2011. Influence of process parameters on SAC305 lead-free solder powder produced by centrifugal atomization. Powder Technology 214(3): 506-512. https://doi.org/10.1016/j.powtec.2011.09.015

Tanaka, T. & Hara, S. 1997. Surface tension and viscosity of liquid iron alloys. Materia Japan 36(1): 47-54. https://doi.org/10.2320/materia.36.47

Ünal, A. 1992. Rapid solidification of magnesium by gas atomization. Materials and Manufacturing Processes 7(3): 441-461. https://doi.org/10.1080/10426919208947431

Ünal, A. 2018. Production of rapidly solidified aluminium alloy powders by gas atomisation and their applications. Powder Metallurgy 33(1): 53-64. https://doi.org/10.1179/pom.1990.33.1.53

Urionabarrenetxea, E., Avello, A., Rivas, A. & Martín, J.M. 2021. Experimental study of the influence of operational and geometric variables on the powders produced by close-coupled gas atomisation. Materials & Design 199: 109941. https://doi.org/10.1016/j.matdes.2020.109441

Vandel, E., Vaasma, T. & Sugita, S. 2020. Application of image analysis technique for measurement of sand grains in sediments. MethodsX 7: 100981. https://doi.org/10.1016/j.mex.2020.100981

Vippola, M., Valkonen, M., Sarlin, E., Honkanen, M. & Huttunen, H. 2016. Insight to nanoparticle size analysis - novel and convenient image analysis method versus conventional techniques. Nanoscale Research Letters 11: 1-9. https://doi.org/10.1186/s11671-016-1391-z

Wisutmethangoon, S., Plookphol, T. & Sungkhaphaitoon, P. 2011. Production of SAC305 powder by ultrasonic atomization. Powder Technology 209(1-3): 105-111. https://doi.org/10.1016/j.powtec.2011.02.016

Xie, J.W., Zhao, Y.Y. & Dunkley, J.J. 2004. Effects of processing conditions on powder particle size and morphology in centrifugal atomisation of tin. Powder Metallurgy 47(2): 168-172. https://doi.org/10.1179/003258904225015482

Younglove, B.A. & Olien, N.A. 1985. Tables of Industrial Gas Container Contents and Density for Oxygen, Argon, Nitrogen, Helium, and Hydrogen. Washington DC: United States Government Printing Office.

Zhang, L., Chen, X., Li, D., Chen, C., Qu, X., He, X. & Li, Z. 2015. A comparative investigation on MIM418 superalloy fabricated using gas- and water-atomized powders. Powder Technology 286: 798-806. https://doi.org/10.1016/j.powtec.2015.09.023

Zhang, L.P. & Zhao, Y.Y. 2017. Particle size distribution of tin powder produced by centrifugal atomisation using rotating cups. Powder Technology 318: 62-67.  https://doi.org/10.1016/j.powtec.2017.05.038

Zhao, X., Xu, J., Zhu, X. & Zhang, S. 2008. Effect of closed-couple gas atomization pressure on the performances of Al-20Sn-1Cu powders. Rare Metals 27(4): 439-443. https://doi.org/10.1016/S1001-0521(08)60159-X

 

*Corresponding author; email: abdulbasyir037@gmail.com

 

 

 

 

previous