Sains Malaysiana 51(9)(2022): 3113-3123

http://doi.org/10.17576/jsm-2022-5109-30

 

Pencirian Permukaan Kakisan Keluli Karbon dengan Kehadiran Konsortium Bakteria Penurun Sulfat dalam Persekitaran Bergas CO2

(Surface Characteristics of Carbon Steels in the Presence of Sulfate Reducing Bacteria Consortiums in CO2 Gas Environment)

                                                            

RABIAHTUL ZULKAFLI1, NORINSAN KAMIL OTHMAN*1 & NAJMIDDIN YAAKOB2

 

1Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

2Centre of Industrial Process Reliability and Sustainability (INPRES), School of Chemical Engineering, College of Engineering, Universiti Teknologi MARA, 40450, Shah Alam, Selangor Darul Ehsan, Malaysia

 

Received: 11 March 2022/Accepted: 22 June 2022

 

Abstrak

Tingkah laku kakisan keluli karbon API 5L X65 dengan kehadiran bakteria penurun sulfat (SRB) dalam persekitaran CO2 adalah dikaji. Uji kaji yang dijalankan bagi meneliti tingkah laku kakisan adalah ujian kehilangan berat dan analisis permukaan. Spesimen keluli karbon didedahkan kepada medium kawalan (tanpa konsortium bakteria) dan dengan kehadiran konsortium SRB selama 10 hari dalam aliran gas CO2 yang berterusan. Biofilem, produk kakisan dan kedalaman lubang yang terhasil dicirikan dengan mikroskopi elektron imbasan pancaran medan (FESEM), spektroskopi tenaga serakan (EDS), mikroskop fokus tak terhingga (IFM) dan belauan sinar-x (XRD). Keputusan daripada ujian kehilangan berat mengesahkan bahawa spesimen dalam keadaan kawalan membentuk kakisan seragam. Manakala analisis IFM membuktikan bahawa sampel dengan kehadiran konsortium SRB menggalakkan penghasilan kakisan setempat. Hal ini merujuk kepada nilai kadar penembusan liang yang lebih tinggi daripada kadar kakisan seragam dengan kehadiran konsortium SRB. Penelitian menerusi FESEM-EDS membuktikan kehadiran sulfur pada spesimen logam yang terdedah kepada SRB dalam persekitaran CO2 yang menyokong pembentukan lapisan FeS. Seterusnya, pencirian XRD mengesahkan pembentukan Fe3C dan FeS dalam sampel yang terdedah kepada SRB.

 

Kata kunci: Analisis permukaan; kakisan CO2; kakisan setempat; konsortium SRB

 

Abstract

This paper studies the corrosion behaviour of API 5L X65 carbon steel in the presence of sulfate-reducing bacteria (SRB) in a CO2 environment. The experiments carried out to examine the behaviour of corrosion were weight loss test and surface analysis. The carbon steel specimens were exposed to a control medium (without the presence bacteria consortium) and with the presence of SRB consortium for ten days under a continuous flow of CO2 gas. The corrosion products, inclusive of biofilm formations and pit penetrations, were characterised by field emission scanning electron microscopy (FESEM), energy dispersive spectrometer (EDS), infinite focus microscopy (IFM) and x-ray diffraction (XRD). Results from the weight loss test confirmed that the specimens in the control condition (without SRB) formed uniform corrosion. In comparison, the IFM analysis proved that samples with the presence of SRB consortium promote localised corrosion. The localised corrosion event refers to a higher penetration rate value than the uniform corrosion rate in the SRB consortium. FESEM-EDS analyses proved the presence of sulfur on metal specimens exposed to SRB in a CO2 environment which supported the formation of FeS layers. Furthermore, XRD characterisation confirmed the formation of Fe3C and FeS in samples exposed to SRB.

 

Keywords: CO2 corrosion; localised corrosion; SRB consortium; surface analysis

 

REFERENCES

Abdullah, A., Yahaya, N., Norhazilan, M.N. & Rasol, R.M. 2014. Microbial corrosion of API 5L X-70 carbon steel by ATCC 7757 and consortium of sulfate-reducing bacteria. Journal of Chemistry 2014: Article ID. 130345.

Al-Mathami, A., Saricimen, H., Kahraman, R., Al-Zahrani, M. & Al-Dulaijan, S. 2004. Inhibition of atmospheric corrosion of mild steel by sodium dihydrogen orthophosphate treatment. Anti-Corrosion Methods and Materials 51(2): 121-129.

Almeida, P.F., Almeida, R.C.C., Carvalho, E.B., Souza, E.R., Carvalho, A.S., Silva, C.H.T.P. & Taft, C.A. 2006. Overview of sulfate-reducing bacteria and strategies to control biosulfide generation in oil waters. In Modern Biotechnology in Medical Chemistry and Industry. 1st ed. Chapter 9, edited by Taft, C.A. Research Signpost.

Bai, H., Wang, Y., Ma, Y., Zhang, Q. & Zhang, N. 2018. Effect of CO2 partial pressure on the corrosion behavior of J55 carbon steel in 30% crude oil/brine mixture. Materials 11(9): 1765-1780.

Bueno, A.H.S., Solis, J., Zhao, H., Wang, C., Simões, T.A., Bryant, M. & Neville, A. 2018. Tribocorrosion evaluation of hydrogenated and silicon DLC coatings on carbon steel for use in valves, pistons and pumps in oil and gas industry. Wear 394-395: 60-70.

Castaneda, H. & Benetton, X.D. 2008. SRB-biofilm influence in active corrosion sites formed at the steel-electrolyte interface when exposed to artificial seawater conditions. Corrosion Science 50(4): 1169-1183.

De Paula, M.S., Gonçalves, M.M.M., da Cruz Rola, M.A., Maciel, D.J., De Senna, L.F. & Do Lago, D.C.B. 2016. Carbon steel corrosion induced by sulphate-reducing bacteria in artificial seawater: Electrochemical and morphological characterizations. Revista Materia 21(4): 987-995.

Di Bonaventura, M., Brown, B., Nešić, S. & Singer, M. 2019. Effect of flow and steel microstructure on the formation of iron carbonate. Corrosion 75(10): 1183-1193.

Elgadda, R., Naidu, A., Ahmed, R., Shah, S., Hassani, S., Osisanya, S.O. & Saasen, A. 2015. Modeling and experimental study of CO2 corrosion on carbon steel at elevated pressure and temperature. Journal of Natural Gas Science and Engineering 27: 1620-1629.

Fan, M.M., Liu, H.F. & Dong, Z.H. 2013. Microbiologically influenced corrosion of X60 carbon steel in CO2-saturated oilfield flooding water. Materials and Corrosion 64(3): 242-246.

Feng, R., Beck, J.R., Hall, D.M., Buyuksagis, A., Ziomek-Moroz, M. & Lvov, S.N. 2018. Effects of CO2 and H2S on corrosion of martensitic steels in brines at low temperature. Corrosion 74(3): 276-287.

Finšgar, M. & Jackson, J. 2014. Application of corrosion inhibitors for steels in acidic media for the oil and gas industry: A review. Corrosion Science 86: 17-41.

Gao, S., Brown, B., Young, D. & Singer, M. 2018. Formation of iron oxide and iron sulfide at high temperature and their effects on corrosion. Corrosion Science 135: 167-176.

Guan, F., Zhai, X., Duan, J., Zhang, M. & Hou, B. 2016. Influence of sulfate-reducing bacteria on the corrosion behavior of high strength steel eq70 under cathodic polarization. PLoS ONE 11(9): e0162315.

Idris, M.N., Daud, A.R., Mahat, N., Sahrani, F.K. & Othman, N.K. 2016. Perlindungan biokakisan keluli karbon akibat bakteria penurun sulfat yang dipencil daripada minyak mentah tropika. Sains Malaysiana 45(12): 1835-1841.

Idris, M.N., Daud, A.R. & Othman, N.K. 2016. Analisis keberkesanan benziltrietilamonium klorida sebagai perencat kakisan bagi perlindungan keluli karbon. Sains Malaysiana 45(2): 271-277.

Kim, S., Lim, Y.I., Lee, D., Seo, M.W., Mun, T.Y. & Lee, J.G. 2021. Effects of flue gas recirculation on energy, exergy, environment, and economics in oxy-coal circulating fluidized-bed power plants with CO2 capture. International Journal of Energy Research 45(4): 5852-5865.

Kosasang, O., Chumphongphan, S. & Wongkaewmoon, M. 2021. Effect of aging heat treatment on corrosion behavior and corrosion kinetics of 17-4PH stainless steel in artificial saliva. Sains Malaysiana 50(3): 849-858.

Li, Y., Feng, S., Liu, H., Tian, X., Xia, Y., Li, M., Xu, K., Yu, H.B., Liu, Q. & Chen, C.F. 2020. Bacterial distribution in SRB biofilm affects MIC pitting of carbon steel studied using FIB-SEM. Corrosion Science 167: 108512.

Li, Y., Xu, D., Chen, C., Li, X., Jia, R., Zhang, D., Sand, W., Wang, F. & Gu, T. 2018. Anaerobic microbiologically influenced corrosion mechanisms interpreted using bioenergetics and bioelectrochemistry: A review. Journal of Materials Science and Technology 34(10): 1713-1718.

Liu, H. & Cheng, Y.F. 2018. Microbial corrosion of X52 pipeline steel under soil with varied thicknesses soaked with a simulated soil solution containing sulfate-reducing bacteria and the associated galvanic coupling effect. Electrochimica Acta 266: 312-325.

Liu, H., Meng, G., Li, W., Gu, T. & Liu, H. 2019. Microbiologically influenced corrosion of carbon steel beneath a deposit in CO2-saturated formation water containing Desulfotomaculum nigrificans. Frontiers in Microbiology https://www.frontiersin.org/articles/10.3389/fmicb.2019.01298/full

Mahat, N.A., Othman, N.K., Sahrani, F.K. & Idris, M.N. 2015. Inhibition of consortium sulfate reducing bacteria from crude oil for carbon steel protection. Sains Malaysiana 44(11): 1587-1591.

Pessu, F. & Barker, R. 2017. Pitting and uniform corrosion of X65 carbon steel in sour corrosion environments: The influence of CO2, H2S and temperature. Corrosion 73(5): 451-604.

Pessu, F., Barker, R. & Neville, A. 2015. The influence of pH on localized corrosion behavior of X65 carbon steel in CO2-saturated brines. Corrosion 71(12): 1452-1466.

Pessu, F., Barker, R. & Neville, A. 2017. Pitting and uniform corrosion of X65 carbon steel in sour corrosion environments: The influence of CO2, H2S, and temperature. Corrosion 73(9): 1168-1183.

Pessu, F., Hua, Y., Barker, R. & Neville, A. 2018. A study of the pitting and uniform corrosion characteristics of X65 carbon steel in different H2S-CO2-containing environments. Corrosion 74(8): 886-902.

Shah, M., Abdul Manap, N.R., Mawardi Ayob, M.T., Yaakob, N., Embong, Z. & Kamil Othman, N. 2021. Effect of pH2S influence on austenitic stainless steel 316L corrosion behaviours in chloride environment / Kesan pengaruh tekanan separa gas H2S terhadap tingkah laku kakisan keluli tahan karat 316L di persekitaran klorida. Malaysian Journal of Civil Engineering 33(2): https://doi.org/10.11113/mjce.v33.16697

Sun, C., Sun, J., Wang, Y., Lin, X., Li, X., Cheng, X. & Liu, H. 2016. Synergistic effect of O2, H2S and SO2 impurities on the corrosion behavior of X65 steel in water-saturated supercritical CO2 system. Corrosion Science 107: 193-203.

Uttaruk, Y. & Laosuwan, T. 2019. Development of prototype project for carbon storage and greenhouse gas emission reduction from Thailand’s agricultural sector. Sains Malaysiana 48(10): 2083-2092.

Wu, T., Sun, C., Xu, J., Yan, M., Yin, F. & Ke, W. 2018. A study on bacteria-assisted cracking of X80 pipeline steel in soil environment. Corrosion Engineering Science and Technology 53(4): 265-275.

Yaakob, N., Singer, M. & Young, D. 2015. Elemental sulfur corrosion of carbon steel in the presence of sulfur solvent and monoethylene glycol. NACE - International Corrosion Conference Series NACE-2015-5930.

Yu, H., Ma, L., Li, Z. & Jiang, R. 2018. The microbiologically influenced corrosion of L245NS carbon steel by sulfate-reducing bacteria in H2S solutions. International Journal of Electrochemical Science 13(10): 9416-9427.

Yuli Panca Asmara. 2018. The roles of H2S gas in behavior of carbon steel corrosion in oil and gas environment: A review. Jurnal Teknik Mesin (JTM) 7(1): 37-43.

Zhang, C., Zahedi Asl, V., Lu, Y. & Zhao, J. 2020. Investigation of the corrosion inhibition performances of various inhibitors for carbon steel in CO2 and CO2/H2S environments. Corrosion Engineering Science and Technology 55(7): 531-538.

 

*Corresponding author; email: insan@ukm.edu.my

 

 

 

previous