Sains Malaysiana 52(3)(2023): 723-740

http://doi.org/10.17576/jsm-2023-5203-04

 

Carbon Sequestration, Biomass and Soil Carbon Pool Estimation in Oak-Dominated Forests of Hindu-Kush Range Mountains of Pakistan

(Penyerapan Karbon, Biojisim dan Anggaran Takungan Karbon Tanah di Hutan Didominasi Oak di Banjaran Hindu-Kush di Pakistan)

 

ATAUR RAHMAN1, NASRULLAH KHAN2, INAYAT UR RAHMAN3, KISHWAR ALI4 & ACHIM BRAUNING5

 

1Laboratory of Plant Ecology, Department of Botany, University of Malakand, Pakistan-18800

2Laboratory of Plant Ecology, Department of Botany, University of Malakand, Pakistan-18800

3Department of Botany, Government Degree College Madyan Swat. 19020

4School of General Education College of North Atlantic Qatar. P.O Box 24449

5Institute of Geography, Department of Geography and Geosciences, Friedrich-Alexander-University (FAU) Erlangen-Nuremberg, Erlangen, Germany

 

Received: 15 June 2021/Accepted: 20 February 2023



Abstract

The present study aimed to determine the vegetation biomass, soil carbon stocks and carbon sequestration potential of Oak-dominated forests. Thirty forest stands having 10 quadrats of 20×20 were randomly sampled. Out of eighteen tree species, twelve species were associated with Group II followed by Groups I and III, with eight species each. Quercus dilatata was the only Oak species recorded in all three groups having maximum density in Group II (56.14). Quercus semecarpifolia accounted the highest proportion of carbon (235 MgC/ha) in Group II. Quercus baloot, being the dominant species of Group I, is found to accommodate the highest quantities of BMC (335±43 Mg/ha) for all size classes. The highest nitrogen content, total nitrogen and carbon-nitrogen ratio were 0.185%, 8.23 and 59.64, respectively, in Group II. The mean bulk density was 1.519 g/cm3 in group III. The highest soil organic carbon (SOC) was recorded in Group II (2.69%, 119.82 tons/ha). Because of their large aerial scale and high carbon density, Oak-dominated forests in Group II store most of the carbon. These results suggest that organic carbon is a major source of forest carbon with significant climate change mitigation potential that must be conserved and improved by sustainable forest management.

 

Keywords: Bulk density; carbon sequestration; forest carbon; mitigation potential; vegetation biomass

 

Abstrak

Kajian ini bertujuan untuk menentukan biojisim tumbuh-tumbuhan, stok karbon tanah dan potensi penyerapan karbon hutan yang didominasi Oak. Tiga puluh dirian hutan yang mempunyai 10 kuadrat 20×20 telah diambil secara rawak. Dalam lapan belas spesies pokok, dua belas spesies dikaitkan dengan Kumpulan II diikuti oleh Kumpulan I dan III, dengan lapan spesies setiap satu. Quercus dilatata adalah satu-satunya spesies Oak yang direkodkan dalam ketiga-tiga kumpulan yang mempunyai ketumpatan maksimum dalam Kumpulan II (56.14). Quercus semecarpifolia menyumbang bahagian tertinggi karbon (235 MgC/ha) dalam Kumpulan II. Quercus baloot, sebagai spesies dominan Kumpulan I, didapati dapat menampung kuantiti tertinggi BMC (335±43 Mg/ha) untuk semua kelas saiz. Kandungan nitrogen tertinggi, jumlah nitrogen dan nisbah karbon-nitrogen adalah 0.185%, 8.23 dan 59.64, masing-masing dalam Kumpulan II. Purata ketumpatan pukal ialah 1.519 g/cm3 dalam Kumpulan III. Karbon organik tanah (SOC) tertinggi dicatatkan dalam Kumpulan II (2.69%, 119.82 tan/ha). Oleh kerana skala udaranya yang besar dan ketumpatan karbon yang tinggi, hutan yang didominasi oleh Oak dalam Kumpulan II menyimpan kebanyakan daripada karbon. Keputusan ini menunjukkan bahawa karbon organik adalah sumber utama karbon hutan dengan potensi pengurangan perubahan iklim yang ketara yang mesti dipelihara dan diperbaiki oleh pengurusan hutan yang mampan.

 

Kata kunci: Biojisim tumbuhan; karbon hutan; ketumpatan pukal; penyerapan karbon; potensi mitigasi

 

 REFERENCES

Adams, E.A. 2012. World forest area still on the decline. Europe 989: 1-5.

Agus, F., Hairiah, K. & Mulyani, A. 2010. Measuring Carbon Stock in Peat Soils: Practical Guidelines. World Agroforestry Centre (ICRAF) Southeast Asia Regional Program, Indonesian Centre for Agricultural Land Resources Research and Development, Bogor, Indonesia.

Ali, A., Ashraf, M.I., Gulzar, S., Akmal, M. & Ahmad, B. 2019. Estimation of soil carbon pools in the forests of Khyber Pakhtunkhwa Province, Pakistan. J. For. Res. 31: 2313-2321.

Ali, F., Khan, N., Ahmad, A. & Khan, A.A. 2019. Structure and biomass carbon of Olea ferruginea forests in the foot hills of Malakand division, Hindukush range mountains of Pakistan. Acta Ecologica Sinica 39: 261-266.

Ali, F., Khan, N., Ali, K. & Khan, I. 2017. Influence of environmental variables on the distribution of woody species in Muslim graveyards of Malakand Division, Hindukush Range Mountains of Pakistan. Pak. J. Bot. 49: 2357-2366.

Ali, K., Khan, N., Rahman, I.U., Khan, W., Ali, M., Uddin, N. & Nisar, M. 2018. The ethnobotanical domain of the Swat Valley, Pakistan. J. Ethnobiol. Ethnomed. 14: 1-15.

Ali, K., Ahmad, H., Khan, N. & Jury, S. 2014. Future of Abies pindrow in Swat district, northern Pakistan. J. For. Res. 25: 211-214.

Canadell, J.G., Kirschbaum, M.U.F., Kurz, W.A., Sanz, M.J., Schlamadinger, B. & Yamagata, Y. 2007. Factoring out natural and indirect human effects on terrestrial carbon sources and sinks. Environ. Sci. Policy 10: 370-384.

CCTF. 2016. Climate Change and Temperate Forest. http://globalforestatlas.yale.edu/climate-change/climaye-change-temperate-forests.

Chavan, B.L. & Rasal, G.B. 2012. Carbon sequestration potential of young Annona reticulate and Annona squamosa from University campus of Aurangabad. Int. J. Phys. Soc. Sci. 2: 193-198.

Chhabra, A., Palria, S. & Dadhwal, V.K. 2003. Soil organic carbon pool in Indian forests. For. Ecol. Manage. 173: 187-199.

Food and Agriculture Organization (FAO). 2005. Global forest resource assessment 2005: progress towards sustainable forest management. FAO Forestry Paper. p. 147.

Goers, L., Lawson, J. & Garen, E. 2012. Economic drivers of tropical deforestation for agriculture. In Managing Forest Carbon in a Changing Climate, edited by Ashton, M., Tyrrell, M., Spalding, D. & Gentry, B. Dordrecht: Springer. pp. 305-320.

Hartley, J. & Marchant, J.F. 2005. Methods of Determining the Moisture Content of Wood. Forest Resources Research, New South Wales, Department of Primary Industries, Sydney, Australlia.

Hughes, A.C. 2017. Understanding the drivers of Southeast Asian biodiversity loss. Ecosphere 8: e01624. https://doi.org/https://doi.org/10.1002/ecs2.1624

IPCC. 2007a. Climate Change 2007: The Physical Science Basis. Summary for Policymakers, Paris. http://news.bbc.co.uk/2/shared/bsp/hi/pdfs/02_02_07_climatereport.pdf

IPCC. 2007b. Climate change: Impacts, adaptation and vulnerability. In Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate C, edited by Parry, M.L., Canziani, O.F., Palutikof, J.P., van der Linden, P.J. & Hanson, C.E. p. 16.

Iqbal, Z., Zeb, A., Abd_Allah, E.F., Rahman, I.U., Khan, S.M., Ali, N., Ijaz, F., Anwar, Y., Muzammil, S., Alqarawi, A.A., Hashem, A., Afzal, A., Majid, A., Khan, M.A. & Calixto, E.S. 2018. Ecological assessment of plant communities along the edaphic and topographic gradients of biha valley, District Swat, Pakistan. Appl. Ecol. Environ. Res. 16. https://doi.org/10.15666/aeer/1605_56115631

Justine, M.F., Yang, W., Wu, F., Tan, B., Khan, M.N. & Zhao, Y. 2015. Biomass stock and carbon sequestration in a chronosequence of Pinus massoniana plantations in the upper reaches of the Yangtze River. Forests 6: 3665-3682.

Keith, H., Mackey, B.G. & Lindenmayer, D.B. 2009. Re-evaluation of forest biomass carbon stocks and lessons from the world’s most carbon-dense forests. Proc. Natl. Acad. Sci. 106: 11635-11640.

Khan, I.A. 2000. Comparative Fertility Evaluation of Agricultural Forest and Rangeland Soils at Hilkot Watershed, Battal, District Mansehra [Pakistan]. Department of Soil Science, Agriculturel University, Peshawar, Pakistan. pp. 1-15.

Khattak, R.A. & Hussain, Z. 2007. Evaluation of soil fertility status and nutrition of orchards. Soil Environ. 26: 22-32.

Körner, C., Asshoff, R., Bignucolo, O., Hättenschwiler, S., Keel, S.G., Peláez-Riedl, S., Pepin, S., Siegwolf, R.T.W. & Zotz, G. 2005. Carbon flux and growth in mature deciduous forest trees exposed to elevated CO2. Science 309(5739): 1360-1362.

Lal, R. 2004. Soil carbon sequestration impacts on global climate change and food security. Science 304(5677): 1623-1627.

Lal, R. & Lorenz, K. 2012. Carbon sequestration in temperate forests. In Recarbonization of the Biosphere, edited by Lal, R., Lorenz, K., Hüttl, R., Scheider, B., von Braun, J. Dordrecht: Springer. pp. 187-201.

Larsson, T.B., Barbati, A., Bauhus, J., Van Brusselen, J., Lindner, M., Marchetti, M., Petriccione, B. & Petersson, H. 2007. The role of forests in carbon cycles, sequestration, and storage. IUFRO Newsl. 5: 1-10.

Liu, Y., Li, S., Sun, X. & Yu, X. 2016. Variations of forest soil organic carbon and its influencing factors in east China. Ann. For. Sci. 73: 501-511.

Måren, I.E., Karki, S., Prajapati, C., Yadav, R.K. & Shrestha, B.B., 2015. Facing north or south: Does slope aspect impact forest stand characteristics and soil properties in a semiarid trans-Himalayan valley? J. Arid Environ. 121: 112-123.

McCune, B., Grace, J.B. & Urban, D.L. 2002. Analysis of Ecological Communities. MjM software design Gleneden Beach, OR, USA.

Myers, N. 2001. Hotspots Encyclopedia of Biodiversity 3: 371-381.

Nelson, D.W. & Sommers, L. 1983. Total carbon, organic carbon, and organic matter. Methods Soil Anal. Part 2 Chem. Microbiol. Prop. 9: 539-579.

Nelson, D.W. & Sommers, L.E. 1996. Total carbon, organic carbon, and organic matter. In Methods of Soil Analysis. Part 3. Chemical Method, edited by Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T. & Summer, M.E. Madison: Soil Science Society of America and American Society of Agronomy. pp. 961-1010. https://doi.org/https://doi.org/10.2136/sssabookser5.3.c34

Nizami, S.M. 2012. The inventory of the carbon stocks in sub tropical forests of Pakistan for reporting under Kyoto Protocol. J. For. Res. 23: 377-384.

Penman, J., Gytarsky, M., Hiraishi, T., Krug, T., Kruger, D., Pipatti, R., Buendia, L., Miwa, K., Ngara, T., Tanabe, K., 2003. Good Practice Guidance for Land Use, Land-Use Change and Forestry. IPCC. Institute for Global Environmental Strategies.

Philip, M.S. 1994. Measuring Trees and Forests. 2nd ed. Wallingford: CAB. Int.

Poudel, A., Sasaki, N. & Abe, I. 2020. Assessment of carbon stocks in oak forests along the altitudinal gradient: A case study in the Panchase Conservation Area in Nepal. Glob. Ecol. Conserv. 23: e01171.

Rahman, I.U., Afzal, A., Abd_Allah, E.F., Iqbal, Z., Alqarawi, A.A., Hashem, A., Calixto, E.S., Ali, N. & Asmarayani, R. 2021. Composition of plant communities driven by environmental gradients in alpine pastures and cold desert of Northwestern Himalaya, Pakistan. Pakistan J. Bot. 53(2): 655-664. https://doi.org/https://dx.doi.org/10.30848/PJB2021-2(35).

Rahman, I.U., Afzal, A., Iqbal, Z., Bussmann, R.W., Alsamadany, H., Calixto, E.S., Shah, G.M., Kausar, R., Shah, M., Ali, N. & Ijaz, F. 2020a. Ecological gradients hosting plant communities in Himalayan subalpine pastures: Application of multivariate approaches to identify indicator species. Ecol. Inform. 60: 101162. https://doi.org/https://doi.org/10.1016/j.ecoinf.2020.101162

Rahman, I.U., Khan, N. & Ali, K. 2017. Classification and ordination of understory vegetation using multivariate techniques in the Pinus wallichiana forests of Swat Valley, northern Pakistan. Sci. Nat. 104: 24.

Rahman, I.U., Khan, N., Ali, K. & Ahmad, S. 2020b. Vegetation-environment relationship in Pinus wallichiana forests of the Swat Hindukush range of Pakistan. J. For. Res. 31: 185-195.

Rahman, M.H., Holmes, A.W., Deurer, M., Saunders, S.J., Mowat, A. & Clothier, B.E. 2011. Comparison of three methods to estimate organic carbon in allophanic soils in New Zealand. 24th Annual FLRC Workshop. New Zealand: Massey University. p. 4.

Rosenfield, M.F. & Souza, A.F. 2013. Biomass and carbon in subtropical forests: Overview of determinants, quantification methods and estimates. Neotrop. Biol. Conserv. 8: 103-110.

Roy, J., Saugier, B. & Mooney, H.A. 2001. Terrestrial Global Productivity. San Diego: Academic Press.

Schumacher, B.A. 2002. Methods for the Determination of Total Organic Carbon (TOC) in Soils and Sediments. United States Environmental Protection Agency. Environ. Sci. Div. Natl. Expo. Res. Lab. Las Vegas.

Semmartin, M., Di Bella, C. & de Salamone, I.G. 2010. Grazing-induced changes in plant species composition affect plant and soil properties of grassland mesocosms. Plant Soil 328: 471-481.

Shaheen, H., Khan, R.W.A., Hussain, K., Ullah, T.S., Nasir, M. & Mehmood, A. 2016. Carbon stocks assessment in subtropical forest types of Kashmir Himalayas. Pak. J. Bot. 48: 2351-2357.

Sheikh, M.A., Kumar, M. & Bussmann, R.W. 2009. Altitudinal variation in soil organic carbon stock in coniferous subtropical and broadleaf temperate forests in Garhwal Himalaya. Carbon Balance Manag. 4: 1-6.

Shrestha, B.P. & Devkota, B.P. 2013. Carbon stocks in the oak and pine forests in Salyan district, Nepal. Banko Janakari 23: 30-36.

Siddiqui, M.F., Shaukat, S.S. & Ahmed, M. 2014. Influence of soil chemical properties, altitude and slope on the distribution and growth of pine tree species of moist temperate areas of western Himalayan and Hindukush region of Pakistan. J. Appl. Environ. Biol. Sci. 4: 130-140.

Soto-Pinto, L., Anzueto, M., Mendoza, J., Ferrer, G.J. & de Jong, B. 2010. Carbon sequestration through agroforestry in indigenous communities of Chiapas, Mexico. Agrofor. Syst. 78: 39.

Stern, N.H. 2007. The Economics of Climate Change: The Stern Review. Cambridge: Cambridge University Press.

Stockmann, U., Adams, M.A., Crawford, J.W., Field, D.J., Henakaarchchi, N., Jenkins, M., Minasny, B., McBratney, A.B., de Remy de Courcelles, V., Singh, K., Wheeler, I., Abbott, L., Angers, D.A., Baldock, J., Bird, M., Brookes, P.C., Chenu, C., Jastrow, J.D., Lal, R., Lehmann, J., O'Donnell, A.G., Parton, W.J., Whitehead, D. & Zimmermann, M. 2013. The knowns, known unknowns and unknowns of sequestration of soil organic carbon. Agriculture, Ecosystems & Environment 164: 80-99.

Sundquist, E.T. 1993. The global carbon dioxide budget. Science, New Series 259(5097): 934-941.

Tagupa, C., Lopez, A., Caperida, F., Pamunag, G. & Luzada, A. 2010. Carbon dioxide (CO2) sequestration capacity of Tampilisan Forest. E-International Sci. Res. J. 2: 182-191.

Tilahun, F. 2022. Impact of land use land cover change on soil erosion, watershed prioritization and farmer perciption: The case of Mitka Watershed in Ethiopia. Doctoral dissertation. (Unpublished).

Vikrant, K.K. & Chauhan, D.S. 2014. Carbon stock estimation in standing tree of chir pine and banj oak pure forest in two Van Panchayats forest of Garhwal Himalaya. J. Earth Sci. Clim. Change 5: 1.

Watson, R.T., Noble, I.R., Bolin, B., Ravindranath, N.H., Verardo, D.J. & Dokken, D.J. 2000. Land Use, Land-Use Change and Forestry: A Special Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.

Wei, Y., Li, M., Chen, H., Lewis, B.J., Yu, D., Zhou, L., Zhou, W., Fang, X., Zhao, W. & Dai, L. 2013. Variation in carbon storage and its distribution by stand age and forest type in boreal and temperate forests in northeastern China. PLoS ONE 8: e72201.

Zeb, A., Iqbal, Z., Khan, S.M., Rahman, I.U., Haq, F., Afzal, A., Qadir, G. & Ijaz, F. 2020. Species diversity, biological spectrum and phenological behaviour of vegetation of Biha Valley (Swat), Pakistan. Acta Ecol. Sin. 40: 190-196. https://doi.org/https://doi.org/10.1016/j.chnaes.2019.05.004

Zhou, Y.R., Yu, Z.L. & Zhao, S.D. 2000. Carbon storage and budget of major Chinese forest types. Chinese J. Plant Ecol. 24: 518.

 

*Corresponding author; email: nasrullah.uom@gmail.com

 

 

 

 

 

previous