Sains Malaysiana 52(4)(2023): 1087-1099

http://doi.org/10.17576/jsm-2023-5204-05

 

Anaerobic Biological Treatment of Wastewater from Paper Recycling Industry by UASB Reactor

(Rawatan Biologi Anaerobik Air Sisa daripada Industri Kitar Semula Kertas oleh Reaktor UASB)

 

AAIMA IFTIKHAR1, MALIK TAHIR HAYAT1, BIBI SAIMA ZEB1, MARIA SIDDIQUE1, ZULFIQAR AHMED BHATTI1, UMARA ABBASI1 & QAISAR MAHMOOD1,2,*

 

1Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan

2Department of Biology, College of Science, University of Bahrain, Sakhir 32038, Bahrain

 

Received: 4 October 2022/Accepted: 25 March 2023

 

Abstract

The use of an upflow anaerobic sludge blanket (UASB) reactor for the treatment of paper recycling industry effluent containing different pollutants was investigated. In the first phase, reactor was fed with anaerobic sludge and in the second phase, synthetic influent solution with different macro-nutrients and micro-nutrients, trace elements as well as glucose were added as a basis of food and energy. In order to enhance sludge granulation and increase the growth, anaerobic bacterial biomass culture was added and operated for one month. Samples from paper recycling industry effluent with different dilutions were analyzed at a hydraulic retention time (HRT) of 24 h and at 37 °C mesophilic temperature. The removal efficiencies of chemical oxygen demand (COD), biological oxygen demand (BOD), electrical conductivity (EC), total dissolved solids (TDS), total suspended solids (TSS), total solids (TS), nitrates, phosphates, heavy metals (Hg, Pb, Cd, Cr, Cu) and pH were upto 87%, 93%, 77%, 79%, 88%, 82%, 92%, 94%, 86%, 91%, 93%, 98%, 98%, and 7.21 with different of wastewater concentration/percent dilutions 1:9, 2:8, 3:7, 4:6, 5:5, 6:4, 7:3, 8:2, 9:1, 10:0 wastewater. This study concluded that UASB technique was a suitable choice for treating different pollutants in paper recycling industry wastewater.

 

Keywords: Paper recycling industry wastewater; substrate utilization rate; upflow anaerobic sludge blanket (UASB) reactor; wastewater treatment

 

Abstrak

Penggunaan reaktor enapcemar anaerobik aliran atas (UASB) untuk rawatan efluen industri kitar semula kertas yang mengandungi bahan pencemar berbeza telah dikaji. Pada fasa pertama, reaktor telah disuap dengan enapcemar anaerobik dan pada fasa kedua, larutan influen sintetik dengan nutrien makro dan mikro-nutrien yang berbeza, unsur surih serta glukosa ditambah sebagai asas makanan dan tenaga. Untuk meningkatkan granulasi enap cemar dan meningkatkan pertumbuhan, kultur biojisim bakteria anaerobik telah ditambah dan dikendalikan selama satu bulan. Sampel daripada efluen industri kitar semula kertas dengan pencairan berbeza dianalisis pada masa pengekalan hidraulik (HRT) selama 24 jam dan pada suhu mesofilik 37 °C. Kecekapan penyingkiran permintaaan oksigen kimia (COD), permintaan oksigen biologi (BOD), kekonduksian elektrik (EC), jumlah pepejal terlarut (TDS), jumlah pepejal terampai (TSS), jumlah pepejal (TS), nitrat, fosfat, logam berat (Hg, Pb, Cd, Cr, Cu) dan pH adalah sehingga 87%, 93%, 77%, 79%, 88%, 82%, 92%, 94%, 86%, 91%, 93%, 98%, 98% dan 7.21 dengan kepekatan air sisa/peratus pencairan 1:9, 2:8, 3:7, 4:6, 5:5, 6:4, 7:3, 8:2, 9:1, 10:0 air sisa. Kajian ini merumuskan bahawa teknik UASB adalah pilihan yang sesuai untuk merawat bahan pencemar yang berbeza dalam air sisa industri kitar semula kertas.

 

Kata kunci: Air sisa industri kitar semula kertas; kadar penggunaan substrat; rawatan air sisa; reaktor enapcemar anaerobik aliran atas (UASB)

 

REFERENCES

Apha, A. 2007. WEF (2005) Standard Methods for the Examination of Water and Wastewater. Washington: National Government Publication. https://www. worldcat. org

Ashrafi, O., Yerushalmi, L. & Haghighat, F. 2015. Wastewater treatment in the pulp-and-paper industry: A review of treatment processes and the associated greenhouse gas emission. Journal of Environmental Management 158: 146-157.

Ashrafi, O., Yerushalmi, L. & Haghighat, F. 2013. Greenhouse gas emission by wastewater treatment plants of the pulp and paper industry - Modeling and simulation. International Journal of Greenhouse Gas Control 17: 462-472.

Bakraoui, M., El Gnaoui, Y., Lahboubi, N., Karouach, F. & El Bari, H. 2020. Kinetic study and experimental productions of methane production from UASB reactor treating wastewater from recycled pulp and paper for the continuous test. Biomass and Bioenergy 139: 105604.

Bhatti, Z., Maqbool, F., Malik, A. & Mehmood, Q. 2014. UASB reactor startup for the treatment of municipal wastewater followed by advanced oxidation process. Brazilian Journal of Chemical Engineering 31: 715-726.

Buzzini, A.P. & Pires, E.C. 2007. Evaluation of a upflow anaerobic sludge blanket reactor with partial recirculation of effluent used to treat wastewaters from pulp and paper plants. Bioresource Technology 98: 1838-1848.

Cai, F., Lei, L. & Li, Y. 2019. Different bioreactors for treating secondary effluent from recycled paper mill. Science of The Total Environment 667: 49-56.

Chatterjee, B. & Mazumder, D. 2019. Role of stage-separation in the ubiquitous development of anaerobic digestion of organic fraction of municipal solid waste: A critical review. Renewable and Sustainable Energy Reviews 104: 439-469.

De la Varga, D., Díaz, M., Ruiz, I. & Soto, M. 2013. Heavy metal removal in an UASB-CW system treating municipal wastewater. Chemosphere 93: 1317-1323.

Fang, H., Chui, H. & Li, Y. 1994. Microbial structure and activity of UASB granules treating different wastewaters. Water Science & Technology 30: 87-96.

Ginni, G., Adishkumar, S., Rajesh Banu, J. & Yogalakshmi, N. 2014. Treatment of pulp and paper mill wastewater by solar photo-Fenton process. Desalination and Water Treatment 52: 2457-2464.

Gotmare, M., Dhoble, R. & Pittule, A. 2011. Biomethanation of dairy waste water through UASB at mesophilic temperature range. Int. J. Adv. Eng. Sci. Technol. 8: 1-9.

Gupta, S.K., Singh, B., Mungray, A.K., Bharti, R., Nema, A.K., Pant, K. & Mulla, S.I. 2022. Bioelectrochemical technologies for removal of xenobiotics from wastewater. Sustainable Energy Technologies and Assessments 49: 101652.

Iftikhar, A., Khan, M.S., Rashid, U., Mahmood, Q., Zafar, H., Bilal, M. & Riaz, N. 2020. Influence of metallic species for efficient photocatalytic water disinfection: Bactericidal mechanism of in vitro results using docking simulation. Environmental Science and Pollution Research 27: 39819-39831.

Kamali, M. & Khodaparast, Z. 2015. Review on recent developments on pulp and paper mill wastewater treatment. Ecotoxicology and Environmental Safety 114: 326-342.

Kim, Y., Han, K. & Lee, W. 2003. Removal of organics and calcium hardness in liner paper wastewater using UASB and CO2 stripping system. Process Biochemistry 38: 925-931.

Krishna, K.V., Sarkar, O. & Mohan, S.V. 2014. Bioelectrochemical treatment of paper and pulp wastewater in comparison with anaerobic process: Integrating chemical coagulation with simultaneous power production. Bioresource Technology 174: 142-151.

Ma, B., Peng, Y., Zhang, S., Wang, J., Gan, Y., Chang, J., Wang, S., Wang, S. & Zhu, G. 2013. Performance of anammox UASB reactor treating low strength wastewater under moderate and low temperatures. Bioresource Technology 129: 606-611.

Mahmood, Q., Ping, Z., Cai, J., Wu, D., Hu, B. & Li, J. 2007. Anoxic sulfide biooxidation using nitrite as electron acceptor. Journal of Hazardous Materials 147(1-2): 249-256.

Metcalf, L., Eddy, H.P. & Tchobanoglous, G. 1991. Wastewater Engineering: Treatment, Disposal, and Reuse. New York: McGraw-Hill. 

Meyer, T. & Edwards, E.A. 2014. Anaerobic digestion of pulp and paper mill wastewater and sludge. Water Research 65: 321-349.

Mullen, M., Wolf, D., Ferris, F., Beveridge, T., Flemming, C. & Bailey, G. 1989. Bacterial sorption of heavy metals. Applied and Environmental Microbiology 55: 3143-3149.

Patel, A., Arora, N., Pruthi, V. & Pruthi, P.A. 2017. Biological treatment of pulp and paper industry effluent by oleaginous yeast integrated with production of biodiesel as sustainable transportation fuel. Journal of Cleaner Production 142: 2858-2864.

Pererva, Y., Miller, C.D. & Sims, R.C. 2020. Approaches in design of laboratory-scale UASB reactors. Processes 8: 734.

Rosa, A., Chernicharo, C., Lobato, L., Silva, R., Padilha, R. & Borges, J. 2018. Assessing the potential of renewable energy sources (biogas and sludge) in a full-scale UASB-based treatment plant. Renewable Energy 124: 21-26.

Tawfik, A., Bakr, M.H., Nasr, M., Haider, J., Lim, H., Qyyum, M.A. & Lam, S.S. 2022. Economic and environmental sustainability for anaerobic biological treatment of wastewater from paper and cardboard manufacturing industry. Chemosphere 289: 133166.

Van Lier, J., Van der Zee, F., Frijters, C. & Ersahin, M. 2015. Celebrating 40 years anaerobic sludge bed reactors for industrial wastewater treatment. Reviews in Environmental Science and Bio/Technology 14: 681-702.

Yeoman, S., Stephenson, T., Lester, J. & Perry, R. 1988. The removal of phosphorus during wastewater treatment: A review. Environmental Pollution 49: 183-233.

Zeng, T.T., Rene, E.R., Zhang, S.Q. & Lens, P.N.L. 2019. Removal of selenate and cadmium by anaerobic granular sludge: EPS characterization and microbial community analysis. Process Safety and Environmental Protection 126: 150-159.

Zwain, H.M., Aziz, H.A. & Dahlan, I. 2016. Effect of inoculum source and effluent recycle on the start-up performance of a modified anaerobic inclining-baffled reactor treating recycled paper mill effluent. Desalination and Water Treatment 57: 21350-21363.

Zwain, H.M., Hassan, S.R., Zaman, N.Q., Aziz, H.A. & Dahlan, I. 2013. The start-up performance of modified anaerobic baffled reactor (MABR) for the treatment of recycled paper mill wastewater. Journal of Environmental Chemical Engineering 1: 61-64.

 

*Corresponding author; email: mahmoodzju@gmail.com

 

 

 

 

 

 

previous