Sains Malaysiana 42(8)(2013): 1121–1129

 

Penghasilan Poliol Minyak Sawit Olein Secara Hidrolisis Selanjar dan Berkelompok

(Palm Olein Polyols Production by Batch and Continuous Hydrolisis)

 

 

Darfizzi Derawi* & Jumat Salimon

Pusat Pengajian Sains Kimia dan Teknologi Makanan, Fakulti Sains dan Teknologi

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor D.E., Malaysia

 

Darfizzi Derawi*

Jabatan Sains, Fakulti Sains, Teknologi dan Pembangunan Insan (FSTPi)

Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Batu Pahat, Johor Darul Takzim

Malaysia

 

Diserahkan: 19 Januari 2012 / Diterima: 25 Januari 2013

 

 

ABSTRAK

Sebatian poliol minyak sawit olein (di-hidroksi-POo) (70% hasil) disintesis melalui pembukaan gelang oksirana minyak sawit olein terepoksida (EPOo) secara hidrolisis selanjar dan berkelompok. Hasil optimum pembukaan gelang oksirana (97.2%) bagi kedua-dua tindak balas selama 90 min (tindak balas selanjar) dan 75 min (tindak balas berkelompok) dengan menggunakan mangkin asid perklorik 3% v/wt. Spektrum transformasi Fourier inframerah (FTIR) di-hidroksi-POo menunjukkan kehadiran puncak lebar getaran regangan kumpulan hidroksil pada nombor gelombang 3429 cm-1, menunjukkan sebatian poliol telah berjaya dihasilkan. Spektrum resonan magnetik nukleus-karbon (13C-NMR) di-hidroksi-POo telah menunjukkan kehadiran puncak karbon yang terikat dengan kumpulan hidroksil (74.5 ppm). Spektrum resonan magnetik nukleus-proton (1H-NMR) di-hidroksi-POo telah menunjukkan kehadiran puncak proton yang terikat pada karbon poliol (3.4 ppm) dan proton pada kumpulan hidroksil (4.6 ppm). Kelikatan kinematik produk poliol (nilai hidroksil sebanyak 110.7 mgKOH/g minyak) adalah 1435.2 cSt (40oC) dan 55.2 cSt (100oC) dengan indeks kelikatan 78.

 

Kata kunci: hidrolisis; minyak sawit olein terepoksida; poliol minyak sawit olein

 

ABSTRACT

Di-hydroxy-POo (70% of yield) was synthesised through oxirane cleavage of epoxidized palm olein (EPOo) by using continuous and batch hydrolysis process. Both hydrolysis processes obtained an optimum oxirane cleavage yield (97.2%) by using perchloric acid 3% v/wt for 90 min (continuous process) and 75 min (batch process). The presence of stretching vibration broadband peak of hydroxyl at wavenumber 3429 cm-1 shown on the Fourier transformation infra-red (FTIR) spectrum, indicate formation of polyols compound. The carbon-nuclear magnetic resonance (13C-NMR) spectrum of di-hydroxy-POo showed the presence of carbon peak bonded with hydroxyl (74.5 ppm). The proton-nuclear magnetic resonance (1H-NMR) spectrum of di-hydroxy-POo showed the presence of proton peak attached to the carbon of polyols (3.4 ppm) and proton of hydroxyl (4.6 ppm). Kinematic viscosity of polyols product (110.7 mgKOH/g oil) were 1435.2 cSt (40oC) and 55.2 cSt (100oC) with the viscosity index of 78.

 

Keywords: Epoxidized palm olein; hydrolysis; palm olein polyols

RUJUKAN

A.O.C.S. 1998. Official Methods and Recommended Practices of AOCS. Illionis: AOCS.

Cheong, M.Y., Ooi, T.L., Ahmad, S., Wan Yunus, W.M.Z. & Kuang, D. 2009. Synthesis and characterization of palm-based resin for UV coating. J. Appl. Polymer Science 111(5): 2353-2361.

Darfizzi Derawi & Jumat Salimon. 2010. Optimization on epoxidation of palm olein by using performic acid. E-Journal of Chemistry 7(4): 1440-1448.

Dinda, S., Patwardhan, A.V., Goud, V.V. & Pradhan, N.C. 2008. Epoxidation of cottonseed oil by aqueous hydrogen peroxide catalysed by liquid inorganic acids. Bioresource Technology 99(2008): 3737-3744.

Emery. 1983. Emery Analytical Testing Procedures. USA: Emery Industries.

Gunstone, F.D. 2004. The Chemistry of Oils and Fats: Sources, Composition, Properties and Uses. UK: Blackwell Publishing Ltd.

Housecroft, C.E. & Sharpe, A.G. 2004. Inorganic Chemistry. 2nd ed. USA: Prentice Hall.

Huang, J. & Zhang, L. 2002. Effects of NCO/OH molar ratio on structure and properties of graft-interpenetrating polymer networks from polyurethane and nitrolignin. Polymer 43(2002): 2287-2294.

Jumat Salimon, Nadia Salih & Emad Yousif. 2011. Chemically modified biolubricant basestocks from epoxidized oleic acid: Improved low temperature properties and oxidative stability. J. Saudi Chem. Soc. 15: 195-201.

Noureddini, H. & Medikonduru, V. 1997. Glycerolysis of fats and methyl esters. J. Am. Oil Chem. Soc. (JAOCS) 74: 419-425.

O’Brien, R.D. 1998. Fats and Oils: Formulating and Processing for Applications. Switzerland: Technomic Publishing AG.

Paquot, C. 1979. Standard Methods for the Analysis of Oils, Fats and Derivatives Part-1. 5th ed. Germany: Pergamon Press.

Pavia, D.L., Lampman, G.M. & Kriz, G.S. 2001. Introduction to Spectroscopy. USA: Thomson Learning, Inc.

Rozman, H.D., Yeo, Y.S. & Tay, G.S. 2003. The mechanical and physical properties of polyurethane composites based on rice husk and polyethylene glycol. Polymer Testing 22: 617-623.

Salmiah, A., Parthiban, S. & Dieter, W. 1995. Paten Singapura (55223), Malaysia (MY-114189-A) dan Indonesia (patent application: P962884).

Scrimgeour, C. 2005. Chemistry of Fatty Acids. 6th ed. Scotland: Wiley & Sons Inc.

Siwayanan, P., Ooi, T.L., Shaari, N.Z.K., Ahmad, S., Wiese, D. & Chua, M.C. 1999. Recent development in palm-based polyols. Paper read at PORIM International Palm Oil Congress (Oleochemicals), at Kuala Lumpur.

Socrates, G. 2001. Infrared and Raman Characteristic Group Frequencies. 3rd ed. Chichester: John Wiley & Sons Ltd.

Stachowiak, G.W. & Batchelor, A.W. 2005. Engineering Tribology. Ed. Ke-3. UK: Elsevier Inc.

Tanaka, R., Hirose, S. & Hatakeyama, H. 2007. Preparation and characterization of polyurethane foams using a palm oil-based polyol. Bioresource Technology 99(2008): 3810-3816.

Velayutham, T.S., Abd Majid, W.H., Ahmad, A.B., Kang, G.Y. & Gan, S.N. 2009. Synthesis and characterization of polyurethane coatings derived from polyols synthesized with glycerol, phthalic anhydride and oleic acid. Porgcoat. 66: 367-371.

Wade, L.G. 2006. Organic Chemistry. 6th ed. United States: Pearson Prentice Hall.

 

*Pengarang untuk surat-menyurat ; email: darfizzi@uthm.edu.my

 

 

sebelumnya