Sains Malaysiana 43(2)(2014): 289–293

 

Spin-on-Glass (SOG) based Insulator of Stack Coupled Microcoils for

MEMS Sensors and Actuators Application

(Penebat Gegelung Mikro Gandingan Tertimbun Berasaskan Spin-atas-Kaca (SOG)

untuk Aplikasi Pengesan dan Penggerak MEMS)

 

 

JUMRIL YUNAS*1, BURHANUDDIN YEOP MAJLIS1, AZRUL AZLAN HAMZAH1

& BADARIAH BAIS2

1Institute of Microengineering and Nanoelectronics, Universiti Kebangsaan Malaysia

43600 Bangi, Selangor, Malaysia

  2Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia

43600 Bangi, Selangor, Malaysia

 

Diserahkan: 7 Januari 2013/Diterima: 22 Julai 2013

 

ABSTRACT

A comprehensive study on the spin-on-glass (SOG) based thin film insulating layer is presented. The SOG layer has been fabricated using simple MEMS technology which can play an important role as insulating layer of stack coupled microcoils. The fabrication process utilizes a simple, cost effective process technique as well as CMOS compatible resulting to a reproducible and good controlled process. It was observed that the spin speed and material preparation prior to the process affect to the thickness and surface quality of the layer. Through the annealing process at temperature 425oC in N2 atmospheric for 1 h, a 750 nm thin SOG layer with the surface roughness or the uniformity of about 1.5% can be achieved. Furthermore, the basic characteristics of the spiral coils, including the coupling characteristics and its parasitic capacitance were discussed in wide range of operating frequency. The results from this investigation showed a good prospect for the development of fully integrated planar magnetic field coupler and generator for sensing and actuating purposes.

 

Keywords: Insulating layer; MEMS fabrication; sensor and actuator; spin-on-glass; stack coupled microcoils

 

ABSTRAK

Satu kajian menyeluruh mengenai lapisan penebat filem nipis berasaskan spin-atas-kaca (SOG) dibentangkan. Lapisan SOG telah difabrikasi menggunakan teknologi mudah MEMS yang memainkan peranan penting sebagai lapisan penebat gegelung mikro gandingan tertimbun. Proses fabrikasi tersebut menggunakan teknik mudah, kos efektif serta serasi dengan CMOS dan menghasilkan proses pengulangan dan kawalan yang baik. Dapat diperhatikan bahawa kelajuan putaran dan penyediaan bahan sebelum proses memberi kesan kepada ketebalan dan kualiti permukaan lapisan. Melalui proses penyepuhlindapan pada suhu 425oC dalam atmosfera N2 selama 1 jam, lapisan SOG nipis setebal 750 nm dengan kekasaran permukaan atau keseragaman yang dicapai adalah sekitar 1.5%. Seterusnya, ciri-ciri asas gegelung lingkaran, termasuk ciri-ciri gandingan dan kapasitan parasitik juga turut dibincangkan dalam berbagai julat frekuensi operasi. Hasil kajian ini menunjukkan prospek yang baik bagi pembangunan pengganding medan magnet dan penjana planar bersepadu untuk tujuan pengesanan dan pergerakan.

 

Kata kunci: Fabrikasi MEMS; gegelung mikro gandingan tertimbun; lapisan penebat; pengesan dan penggerak; spin-atas-kaca

 

RUJUKAN

 

Arshak, K.I. & Almukhtar, B. 1999. Development of high frequency coreless transformer using thick film polymer technology. Microelectronics Journal 30(2): 119-125.

Aw, K.C. 2004. Reliability of MSQ spin-on glass as low-k interlayer dielectric in VLSI device. Proc.of IEEE International Conference on Semiconductor Electronics (ICSE), 7-9 Dec.

Brunet, M., O' Donnel, T., O' Brien, T., Mckloskey, J. & O' Mathuna, C. 2001. Design study and fabrication techniques for high power density microtransformers. Proc. of Applied Power Electronics Conference and Exposition. 2001. APEC2001. Sixteenth Anuall IEE. 2: 1189-1195.

Gaeta, I.S. & Wu, K.J. 1989. Improved EPROM moisture performance using spin-on-glass (SOG) for passivation planarization. Reliability Physics Symposium, 27th Annual Proceedings., International, Santa Clara, US: 122 – 126.

Gel, M. 2002. Fabrication method for out of plane, micro-coil by surface micromachining. Sensor and Actuators A: 97-98.

Hamzah, A.A., Majlis, B.Y. & Ahmad, I. 2007. HF etching of sacrificial spin-on glass in straight and junctioned microchannels for MEMS microstructure release. J. Electrochem. Soc. 154(8): D376-D382.

Lee, C.Y., Chen, Z.H., Chang, H.T., Wen, C.Y. & Cheng, C.H. 2009. Design and fabrication of novel micro electromagnetic actuator. Microsyst. Technol. 13(11-12): 1171-1177.

Mino, M., Yachi, T., Yanagisawa, K., Tago, A. & Tsukamoto, K. 1995. Switching converter using thin film microtransformer with monolithically integrated rectifier diodes. In Power Electronics Specialist Conference, PESC ’95 Record, 26th Annual IEEE (Volume 2).

Qin, S., Zhou, Y., Chan, C. & Chu, P.K. 1998. Fabrication of low dielectric constant materials for ULSI multilevel interconnection by plasma ion implantation. IEEE Electron Device Letter 19(11): 420-422.

Schmidt, V., Senz, S., Goesele, U. 2007. Influence of the Si/SiO2 interface on the charge carrier density of Si nanowires. Appl. Phys. A 86(2): 187-191.

Shen, M., Yamahata, C. & Gijs, M.A.M. 2008. A high-performance compact electromagnetic actuator or a PMMA ball-valve micropump. J. Micromech. Microeng. 18: 025031.

Tapia, J.A., Agustin, L. Pedro, H.M., García-Ramírez, J., Martinez-Castillo, J., Figueras, E., Flores, A. & Manjarrez, E. 2011. Sensing magnetic flux density of artificial neurons with a MEMS device. Biomed. Microdevices 13: 303–313.

Yoon, J.B., Ahn, C.H. & Kim, C.K. 1999. High performance three dimensional on-chip inductors fabricated by novel micromachining technology for RF MMIC. IEEE MTT-S International Microwave Symposium Digest 4: 1523-1526.

Yunas, J., Hamzah, A.A. & Majlis, B.Y. 2009. Fabrication and characterization of surface micromachined stacked transformer on glass substrate. Microelectronics Engineering 86: 2020-2025.


*Corresponding author; email: jumrilyunas@ukm.my