Sains Malaysiana 43(4)(2014): 583–594

 

Electrical Characteristics and Modeling of a Filamentary Dielectric Barrier

Discharge in Atmospheric Air

(Ciri Elektrik dan Model Suatu Nyahcas Dielektrik Berpenghadang dalam Udara Atmosfera)

 

 

W.H. TAY, S.L. YAP & C.S. WONG*

Plasma Technology Research Centre, Physics Department, University of Malaya

50603 Kuala Lumpur, Malaysia

 

Diserahkan: 13 Disember 2012/Diterima: 15 Julai 2013

 

ABSTRACT

The electrical characteristics of a filamentary dielectric barrier discharge (DBD) are studied experimentally and numerically. The DBD system which has parallel plate electrodes geometry is powered by a 50 Hz power supply and operated at atmospheric air. A dynamic electric circuit model considering the discharge region and the non-discharge region being connected by a surface resistance is proposed. Simulation using this model is shown to fit the experimentally measured QV diagram satisfactorily. The effects of the air gap distance and the dielectric surface on the discharge behavior are then investigated. It is found that the surface resistivity of the dielectric is one of the important parameters governing the discharge behavior.

 

Keywords: Dielectric barrier discharge; electrical characteristics; electrical modeling; filamentary discharge

 

ABSTRAK

Ciri nyahcas dielektrik berpenghadang (DBD) telah dikaji secara eksperimen dan berangka. Sistem DBD yang mengandungi dua elektrod plat yang selari dikuasakan dengan bekalan kuasa 50 Hz dan beroperasi dalam udara atmosfera. Satu model elektrik yang mengambil kira rantau tidak bernyahcas dan rantau bernyahcas telah dicadangkan. Dalam model elektrik ini, rantau tidak bernyahcas dan rantau bernyahcas disambung dengan satu rintangan permukaan. Keputusan simulasi berjaya menyamai keputusan Lissajous QV yang diperoleh daripada eksperimen. Kesan jarak jurang ruang dan rintangan permukaan dielektrik dalam DBD juga dikaji dan didapati bahawa rintangan permukaan dielektrik adalah satu parameter yang penting untuk mengawal sifat nyahcas.

 

Kata kunci: Ciri elektrik; nyahcas dielektrik berpenghadang; nyahcas filamen; model elektrik

RUJUKAN

Bartnikas, R., Radu, I. & Wertheimer, M.R. 2007. Dielectric electrode surface effects on atmospheric pressure glow discharges in helium. IEEE Transactions on Plasma Science 35: 1437-1447.

Bhosle, S., Zissis, G., Damelincourt, J.J., Capdevila, A., Gupta, K., Dawson, F.P. & Tarasenko, V.F. 2005. Electrical modeling of a homogeneous dielectric barrier discharge (DBD). Conference Record of the 2005 IEEE Industry Applications Conference 4: 2315-2319.

Bhosle, S., Zissis, G., Damelincourt, J.J. & Dawson, FP. 2004. Calculation of the impedance of an axisymetric DBD lamp for power supply design purposes. Conference Record of the 2004 IEEE Industry Applications Conference 3: 1667-1670.

Brandenburg, R., Navratil, Z., Jansky, J., St’ahel, P., Trunec, D. & Wagner, H.E. 2009. The transition between different modes of barrier discharges at atmospheric pressure. Journal of Physics D-Applied Physics 42(8): 085208.

Chirokov, A., Gutsol, A., Fridman, A., Sieber, K.D., Grace, J.M. & Robinson, K.S. 2006. A study of two-dimensional microdischarge pattern formation in dielectric barrier discharges. Plasma Chemistry and Plasma Processing 26: 127-135.

Falkenstein, Z. & Coogan, J.J. 1997. Microdischarge behaviour in the silent discharge of nitrogen-oxygen and water-air mixtures. Journal of Physics D-Applied Physics 30: 817-825.

Flores-Fuentes, A., Pena-Eguiluz, R., Lopez-Callejas, R., Mercado-Cabrera, A., Valencia-Alvarado, R., Barocio- Delgado, S. & de la Piedad-Beneitez, A. 2009. Electrical model of an atmospheric pressure dielectric barrier discharge cell. IEEE Transactions on Plasma Science 37(1): 128-134.

Gherardi, N. & Massines, F. 2001. Mechanisms controlling the transition from glow silent discharge to streamer discharge in nitrogen. IEEE Transactions on Plasma Science 29: 536-544.

Hashim, S.A., Wong, C.S., Abas, M.R. & Dahlan, K.Z. 2007. Feasibility study on the removal of nitric oxide (NO) in gas phase using dielectric barrier discharge reactor. Malaysia Journal of Science 26: 111-116.

Hashim, S.A., Wong, C.S., Abas, M.R. & Dahlan, K.Z. 2010. Discharge based processing systems for nitric oxide remediation. Sains Malaysiana 39: 981-987.

Kamchouchi, H.E. & Zaky, A.A. 1975. A direct method for the calculation of the edge capacitance of thick electrodes. Journal of Physics D-Applied Physics 8(2): 1365-1371.

Kim, G.H., Jeong, S.Y., Kwon, H.C. & Song, S.H. 2006. Capacitance between an atmospheric discharge plasma and the dielectric electrode in the parallel cell reactor. Journal of the Korean Physical Society 49: 1307-1311.

Kogelschatz, U., Eliasson, B. & Egli, W. 1997. Dielectric-barrier discharges. Principle and applications. Journal De Physique Iv 7: 47-66.

Kogelschatz, U., Eliasson, B. & Egli, W. 1999. From ozone generators to flat television screens: History and future potential of dielectric-barrier discharges. Pure and Applied Chemistry 71: 1819-1828.

Kogelschatz, U. 2002. Filamentary, patterned, and diffuse barrier discharges. IEEE Transactions on Plasma Science 30: 1400-1408.

Kogelschatz, U. 2003. Dielectric-barrier discharges: Their history, discharge physics, and industrial applications. Plasma Chemistry and Plasma Processing 23: 1-46.

Kozlov, K.V., Wagner, H.E., Brandenburg, R. & Michel, P. 2001. Spatio-temporally resolved spectroscopic diagnostics of the barrier discharge in air at atmospheric pressure. Journal of Physics D-Applied Physics 34: 3164-3176.

Li, M., Li, C.R., Zhan, H.M., Xu, J.B. & Wang, X.X. 2008. Effect of surface charge trapping on dielectric barrier discharge. Applied Physics Letters 92: 031503.

Liu, S.H. & Neiger, M. 2003. Electrical modelling of homogeneous dielectric barrier discharges under an arbitrary excitation voltage. Journal of Physics D-Applied Physics 36: 3144-3150.

Manley, T.C. 1943. The electric characteristics of the ozonator discharge. Trans. Electrochem. Soc. 84: 83-96.

Naude, N., Cambronne, J.P., Gherardi, N. & Massines, F. 2005. Electrical model and analysis of the transition from an atmospheric pressure Townsend discharge to a filamentary discharge. Journal of Physics D-Applied Physics 38: 530-538.

Pal, U.N., Sharma, A.K., Soni, J.S., Kr, S., Khatun, H., Kumar, M., Meena, B.L., Tyagi, M.S., Lee, B.J., Iberler, M., Jacoby, J. & Frank, K. 2009. Electrical modelling approach for discharge analysis of a coaxial DBD tube filled with argon. Journal of Physics D-Applied Physics 42(4): 045213.

Ramasamy, R.K., Rahman, N.A. & Wong, C.S. 2001. Effect of temperature on the ozonation of textile waste effluent. Color Technol. 117: 95-97.

Somerville, I. & Vidaud, P. 1985. Surface spreading of charge due to ohmic conduction. Proceedings of the Royal Society of London Series a-Mathematical Physical and Engineering Sciences 399: 277-293.

Subedi, D.P., Tyata, R.B., Khadgi, A. & Wong, C.S. 2012. Physiochemical and microbiological analysis of drinking water treated by using ozone. Sains Malaysiana 41: 739-745.

Valdivia-Barrientos, R., Pacheco-Sotelo, J., Pacheco-Pacheco, M., Benitez-Read, J.S. & Lopez-Callejas, R. 2006. Analysis and electrical modelling of a cylindrical DBD configuration at different operating frequencies. Plasma Sources Science & Technology 15: 237-245.

Wagner, H.E., Brandenburg, R., Kozlov, K.V., Sonnenfeld, A., Michel, P. & Behnke, J.F. 2003. The barrier discharge: Basic properties and applications to surface treatment. Vacuum 71: 417-436.

 

*Pengarang untuk surat-menyurat; email: cswong@um.edu.my

 

 

 

sebelumnya