Sains Malaysiana 46(11)(2017): 2109-2118

http://dx.doi.org/10.17576/jsm-2017-4611-11

 

The Application of Airborne Geophysics Data for Rapid Regional Geological Mapping in Northwestern Angola

(Aplikasi Data Geofizik di Udara untuk Pemetaan Geologi Serantau di Barat Laut Angola)

 

HONGRUI ZHANG1,2*, PENGFEI JIA2, XU ZHANG2 & ZHIGANG WANG2

 

1Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China

 

2CITIC Construction Co., Ltd., Beijing 100027, China

 

Diserahkan: 29 Januari 2017/Diterima: 10 Jun 2017

 

ABSTRACT

Airborne prospecting (spectrum, magnetics) measurement is an effectively auxiliary approach for geological mapping. It effectively measures the magnetic field characteristics and the surface contents of the most common three radioactive elements (K,eU and eTh) of nature in the research area. Given the significant diversities of magnetic characteristics and the radioelements’ contents of different lithological units, these can be applied into the mapping of shallow overburden area. Ternary MAP is a compound imaging technology, providing the radioelements contents a simultaneous display on the same pixel. Based on colour differences, this technology can identify different lithologies and clithofacial changes in the same lithological unit effectively in a certain area. With aeromagnetic data conversion and integrated spectrum images, a good effectiveness of 1:250,000 lithological-structural mapping has been achieved in the research area of Northwestern Angola.

Keywords: Aeromagnetics; data processing; rapid geological mapping; spectrum; 1:250,000

 

ABSTRAK

Pengukuran prospeksi (spektrum, magnetik) di udara adalah pendekatan tambahan yang berkesan untuk pemetaan geologi. Ia secara berkesan mengukur ciri medan magnet dan kandungan permukaan tiga elemen radioaktif (K, eU dan eTh) yang paling biasa di kawasan penyelidikan. Memandangkan ciri kepelbagaian magnetik yang ketara dan kandungan radiounsur daripada unit litologi berbeza, ini boleh digunakan dalam pemetaan kawasan tebukan cetek. Ternari MAP adalah teknologi pengimejan kompaun, memberikan kandungan radiounsur suatu paparan serentak pada piksel yang sama. Berdasarkan perbezaan warna, teknologi ini dapat mengenal pasti pelbagai lapisan dan perubahan klitomuka dalam unit litologi yang sama secara berkesan di kawasan tertentu. Dengan penukaran data aeromagnet dan imej spektrum bersepadu, keberkesanan yang baik 1: 250,000 pemetaan struktur litologi telah dicapai di kawasan penyelidikan Barat Laut Angola.

Kata kunci: Aeromagnet; pemetaan geologi yang cepat; pemprosesan data; spektrum; 1: 250,000

RUJUKAN

Anderson, H. & Nash, C. 1997. Integrated lithostructural mapping of the rossing area, Namibia using high resolution aeromagnetic, radiometric, landsat data and aerial photographs. Exploration Geophysics 28: 185-191.

Aspin, S.J. & Bierwirth, P.N. 1997. GIS analysis of the effect of forest biomass on gamma- radiometric images. Paper presented at the 3rd National Forum on GIS in the Geosciences, Canberra, Australia.

Darnley, A.G. & Ford, K.L. 1987. Regional airborne gamma-ray survey: A review. Paper presented at Third Decennial International Conference on Geophysical and Geochemical Exploration for Minerals and Ground Water, In Proceedings of Exploration 87, Toronto.

Ford, K.L., Savard, M., Dessau, J.C. & Pellerin, E. 2001. The role of gamma-ray spectrometry in radon risk evaluation: A case history from Oka. Geoscience Canada 28(2): 59-64.

Graham, D.F. & Bonham-Carter, G.F. 1993. Airborne radiometric data: A tool for reconnaissance geological mapping using a GIS. Photogrammetric Engineering and Remote Sensing 58: 1243-1249.

IAEA. 2003. Guidelines for Radioelement Mapping using Gamma Ray Spectrometry Data. (Vienna, IAEA-TECDOC-1363, 2003). pp. 95-99.

Jaques, A.L., Wellman, P., Whitaker, A. & Wyborn, D. 1997. High resolution geophysics in modern geological mapping. AGSO Journal of Australian Geology & Geophysics 17: 159-174.

Li, B., Wu, H. & Zhao, D. 2016. Extraction technology about the information of deep sandlithological type uranium mineralization based on radioactive geophysical method. Progress in Geophysics 31(2): 683-687.

Lo, B.H. & Pitcher, D.H. 1996. A case history on the use of regional aeromagnetic and radiometric data sets for lode gold exploration in Ghana. Annual Meeting Expanded Abstracts, Society of Exploration Geophysicists. pp. 592-595.

Milligan, P. & Gunn, P. 1997. Enhancement and Interpretation of Airborne Geophysical Data. AGSO Journal of Australian Geology and Geophysics 17(2): 63-75.

Reeves, C.V., Reford, S.W. & Millingan, P.R. 1997. Airborne geophysics: Old methods, new images. Geophysics and Geochemistry at the millennium. Proceedings of the Fourth Decennial International Conference on Mineral Exploration. pp. 13-30.

Ridzuan, A.A., Zahar, U.A.U. & Noor, N.A.M. 2017. Association of evacuation dimensions towards risk perception of the Malaysian students who studied at Jakarta, Medan, and Acheh in Indonesia. Malaysian Journal of Geoscience 1(1): 7-12.

Saidin, N.U., Jumali, M.H.H., Kok, K.Y. & Ng, I.K. 2016. Formation of high quality concave using short anodization duration for fabrication of AAO. Sains Malaysiana 45(12): 1787-1794.

Xiong, S., Jing Tong, Ding, Y.Y. & Li, Z. 2016. Aeromagnetic data and geological structure of continental China: A review. Applied Geophysics 13(2): 227-237.

Xiong, S. 2009. The strategic consideration of the development of China’s airborne geophysical technology. Geology in China 36(6): 1366-1374.

Yasin, M. 2017. Diagenesis of Miocene Sandstone in the District Sudunhoti and Poonch, Azad Jammu and Kashmir, Pakistan. Pakistan Journal of Geology 1(1): 5-7.

Zhang, W. 2004. The application of high precision aero geophysical integrated survey to geological mapping. Geophysical and Geochemical Exploration 28(4): 243-286.

 

 

*Pengarang untuk surat-menyurat; email: zhhr2214@163.com

 

 

sebelumnya