Sains Malaysiana 46(9)(2017): 1659–1665

http://dx.doi.org/10.17576/jsm-2017-4609-39

 

As-spun Bio-novolac Fibre Morphological Study based on Resin’s Physico-chemical Properties

(Kajian Morfologi Gentian Bio-novolak Licin dan Nipis berdasarkan Sifat Fiziko-kimia Resin)

SITI NOORUL AINA AB RAHIM1, SARANI ZAKARIA1*, SHARIFAH NABIHAH SYED JAAFAR1, CHIN HUA CHIA1, RASIDI ROSLAN2, HATIKA KACO1 & SINYEE GAN1

 

1Bioresources and Biorefinery Laboratory, Faculty of Science and Technology

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

2Faculty of Industrial Science & Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak

26300 Gambang, Kuantan, Pahang Darul Makmur, Malaysia

 

Diserahkan: 19 Disember 2016/Diterima: 17 Mac 2017

 

ABSTRACT

Bio-novolac fibre made from phenol-formaldehyde derived oil palm empty fruit bunch (EFB) was produced using electrospinning method. The bio-novolac phenol-formaldehyde was prepared via liquefaction and resinification at two different molar ratios of formaldehyde to liquefied EFB (LEFB) (F:LEFB = 0.5:1 and 0.8:1). Electrospinning was applied to the bio-novolac phenol-formaldehyde (BPF) in order to form smooth and thin as-spun fibre. The BPF was electrospun at 15 kV and 15 cm distance between needle and collector at a flow rate of 0.5 mL/h. At lower molecular weight of BPF resin, beads formation was observed. The addition of poly(vinyl) butyral (Mw = 175,000 - 250,000) has improved the fibre formation with lesser beads hence produced more fibre. Polymer solution with higher molecular weight produced better quality fibre.

 

Keywords: Electrospinning; molecular weight; oil palm empty fruit bunch; phenolic resin; poly(vinyl) butyral

 

ABSTRAK

Gentian bio-novolak yang dihasilkan menggunakan fenol-formaldehid terbitan tandan kosong kelapa sawit (TKKS) telah dihasilkan menggunakan kaedah elektroputaran. Bio-novolak fenol-formaldehid telah disediakan melalui pencecairan dan resinifikasi pada dua nisbah molar berbeza iaitu formaldehid kepada TKKS Tercecair (TKKST) (F:TKKST = 0.5:1 dan 0.8:1). Kaedah elektroputaran telah digunakan pada resin bio-novolak fenol-formaldehid (BFF) bagi membentuk gentian licin dan nipis. BFF telah dielektroputaran pada voltan 15 kV dengan jarak 15 cm antara jarum dan pemungut pada kadar aliran 0.5 mL/jam. Pada berat molekul resin BFF lebih rendah, pembentukan manik dapat diperhatikan. Penambahan poli (vinil) butiral (Mw = 175,000 - 250,000) telah menambah baik pembentukan gentian dengan kehadiran manik yang berkurang. Larutan polimer dengan berat molekul yang lebih tinggi telah menghasilkan gentian yang lebih berkualiti.

 

Keywords: Berat molekul; elektroputaran; poli(vinil) butiral; resin fenolik; tandan kosong kelapa sawit

RUJUKAN

Ahmadzadeh, A., Zakaria, S. & Mohammad, D. 2008. Preparation of Novolak type resin by liquefaction of palm oil empty fruit bunch (EFB) using sulphuric acid as a catalyst. Iranian Polymer Journal 17(6): 441-449.

Ahn, Y., Lee, S.H., Kim, H.J., Yang, Y.H., Hong, J.H., Kim, Y.H. & Kim, H. 2012. Electrospinning of lignocellulosic biomass using ionic liquid. Carbohydrate Polymers 88: 395-398.

Ahn, Y.C., Park, S.K., Kim, G.T., Hwang, Y.J., Lee, C.G. & Shin, H.S. 2006. Development of high efficiency nanofilters made of nanofibers. Current Applied Physics 6: 1030-1035.

Alma, M.H., Yoshioka, M., Yao, Y. & Shiraishi, N. 1995. Preparation and characterization of the phenolated wood using hydrochloric acid (HCl) as a catalyst. Wood Science and Technology 30(1): 39-47.

Amran, U.A., Zakaria, S. & Chin, C.H. 2013. Epoxidized natural rubber toughened aqueous resole type liquefied EFB resin: Physical and chemical characterization. AIP Publishing 1: 158-162.

Amran, U.A., Zakaria, S., Chin, C.H., Jaafar, S.N.S. & Rasidi, R. 2015. Mechanical properties and water absorption of glass fibre reinforced bio-phenolic elastomer (BPE) composite. Industrial Crops and Products 72: 54-59.

Bari, M.N., Alam, M.Z., Muyibi, S.A., Jamal, P. & Mamun, A.A. 2010. Effect of particle size on production of citric acid from oil palm empty fruit bunches as new substrate by wild Aspergillus niger. Journal of Applied Polymer Science 10(21): 2648-2652.

Bhardwaj, N. & Kundu, S.C. 2010. Electrospinning: A fascinating fiber fabrication technique. Biotechnology Advances 28: 325-347.

Brydson, J.A. 1975. Plastics Materials. 6th ed. Oxford: Butterworth-Heinmann Ltd. p. 172.

Chin, S.X., Chin, C.H., Zakaria, S., Fang, F. & Ahmad, S. 2015. Ball milling pretreatment and diluted acid hydrolysis of oil palm empty fruit bunch (EFB) fibres for the production of levulinic acid. Journal of the Taiwan Institute of Chemical Engineers 52: 85-92.

Demirbas, M.F. & Balat, M. 2006. Recent advances on the production and utilization trends of bio-fuels: A global perspective. Energy Conversion Management 47: 2371-2381.

Doh, G.H., Lee, S.Y., Kang, I.A. & Kong, Y.T. 2005. Thermal behavior of liquefied wood polymer composites (LWPC). Composite Structures 68(1): 103-108.

Gan, S.Y., Zakaria, S., Ng, P., Chin, C.H. & Chen, R.S. 2015. Effect of acid hydrolysis and thermal hydrolysis on solubility and properties of oil palm empty fruit bunch fiber cellulose hydrogel. BioResources 11(1): 126-139.

Global Palm Oil Production. 2016. Global palm oil production by country. http://www.globalpalmoilproduction.com/. Accessed on 23 October 2016.

Gomes, D.S., da Silva, A.N.R., Morimoto, N.I., Mendes, L.T.F., Furlan, R. & Ramos, I. 2007. Characterization of an electrospinning process using different PAN/DMF concentrations. Polímeros: Ciência e Tecnologia 17(3): 206-211.

He, J., Wan, Y.Q. & Yu, J.Y. 2005. Scaling law in electrospinning: Relationship between electric current and solution flow rate. Polymer 46: 2799-2801.

Hui, P. 2011. Synthesis of polymers from organic solvent liquefied biomass: A review. Renewable and Sustainable Energy Reviews 15: 3454-3463.

Hunley, M.T. & Long, T.E. 2008. Electrospinning functional nanoscale fibers: A perspective for the future. Polymer International 57: 385-389.

Imaizumi, S., Matsumoto, H., Suzuki, K., Minagawa, M., Kimura, M. & Tanioka, A. 2009. Phenolic resin-based carbon thin fibers prepared by electrospinning: Additive effects of poly(vinyl butyral) and electrolytes. Polymer Journal 41(12): 1124-1128.

Jianying, H., Miaoqing, X., Qiang, G., Minghua, L., Qiang, L., Yihong, C., Jiayan, C., Lizong, D. & Yousi, Z. 2005. Controlled synthesis of high-ortho-substitution phenol-formaldehyde resins. Journal of Applied Polymer Science 97: 652-658.

Juhaida, M.F., Paridah, M.T., Mohd. Hilmi, M., Sarani, Z., Jalaluddin, H. & Mohamad Zaki, A.R. 2010. Liquefaction of kenaf (Hibiscus cannabinus L.) core for wood laminating adhesive. Bioresource Technology 101(4): 1355-1360.

Kavitha, B., Jothimani, P. & Rajannan, G. 2013. Empty fruit bunch - A potential organic manure for agriculture. International Journal of Science, Environment and Technology 2(5): 930-937.

Koski, A., Yim, K. & Shivkumar, S. 2004. Effect of molecular weight on fibrous PVA produced by electrospinning. Materials Letters 58: 493-497.

Lannutti, J., Reneker, D., Ma, T., Tomasko, D. & Farson, D. 2007. Electrospinning for tissue engineering scaffolds. Material Science Engineering 27: 504-509.

Liang, D., Hsiao, B.S. & Chu, B. 2007. Functional electrospun nanofibrous scaffolds for biomedical applications. Advanced Drug Delivery 59: 1392-1412.

Maldas, D., Shiraishi, N. & Harada, Y. 1997. Phenolic resol resin adhesives prepared from alkali-catalyzed liquefied phenolated wood and used to bond hardwood. Journal Adhesives Science Technology 11: 305-316.

Moubarik, A., Pizzi, A., Allal, A., Charrier, F. & Charrier, B. 2009. Cornstarch and tannin in phenol-formaldehyde resins for plywood production. Industrial Crops and Products 30(2): 188-193.

Noreen, F.M.Z. & Zakaria, S. 2011. Hydroxypropylation of empty fruit bunches fibre using polyethylene glycol (PEG). Sains Malaysiana 42(3): 307-318.

Plastics Today. 2014. Automotive market drives global phenolic resin demand. http://www.plasticstoday.com/ content/automotive-market-drives-global-phenolic-resin-demand/74034086420977. Accessed 25 October 2016.

Ramakrishna, S., Fujihara, K., Teo, W.W., Lim, T.C. & Ma, Z. 2005. An Introduction to Electrospinning and Nanofibres. Singapore: World Scientific.

Raquez, J.M., Deléglise, M., Lacrampe, M.F. & Krawczak, P. 2010. Thermosetting (bio) materials derived from renewable resources: A critical review. Progress in Polymer Science 35: 487-509.

Reneker, D.H. & Yarin, A.L. 2008. Electrospinning jets and polymer nanofibers. Polymer 49: 2387-2425.

Robert, A.H. & Terry, S.J. 1994. Characterizations of phenol-formaldehyde resol resins. Industrial & Engineering Chemistry Research 33: 693-697.

Roslan, R., Zakaria, S., Chin, H.C., Boehm, R. & Laborie, M.P. 2014. Physico-mechanical properties of resol phenolic adhesives derived from liquefaction of oil palm empty fruit bunch fibres. Industrial Crops and Products 62: 119-124.

Said, F.M. 2010. Liquefaction of cotton stalks (Gossypium hirsutum L.) with phenol. Wood Research 55(2): 71-80.

Sajab, M.S., Chin, C.H., Zakaria, S. & Sillanpää, M. 2015. Fixed-bed column studies for the removal of cationic and anionic dyes by chemically modified oil palm empty fruit bunch fibers: Single-and multi-solute systems. Desalination and Water Treatment 55(5): 1372-1379.

Suzuki, K., Matsumoto, H., Minagawa, M., Kimura, M. & Tanioka, A. 2007. Preparation of carbon fiber fabrics from phenolic resin by electrospray deposition. Polymer Journal 39(11): 1128-1134.

Thompson, C.J., Chase, G.G., Yarin, A.L. & Reneker, D.H. 2007. Effects of parameters on nanofiber diameter determined from electrospinning model. Polymer 48: 6913-6922.

Tian, Z., Zhang, W. & Lu, W. 2016. Preparation of nanofibres from phenol liquefied wood by electrospinning. Nanomaterials and Nanotechnology. https://doi.org/10.5772/62287.

Yoshida, C. & Okabe, K. 2005. Preparation of carbon fibers from biomass-based phenol-formaldehyde resin. Journal of Materials Science 40: 335-339.

Zakaria, S., Ahmadzadeh, A. & Roslan, R. 2013. Flow properties of Novolak-type resin made from liquefaction of oil palm empty fruit bunch (EFB) fibres using sulfuric acid as a catalyst. BioResources 8(4): 5884-5894.

Zakaria, S., Roslan, R., Amran, U.A., Chin, C.H. & Bakaruddin, S.B. 2014. Characterization of residue from EFB and kenaf core fibres in the liquefaction process. Sains Malaysiana 43(3): 429-435.

Zussman, E., Theron, A. & Yarin, A.L. 2003. Formation of nanofiber crossbars in electrospinning. Applied Physics Letters 82: 973-975.

 

 

*Pengarang untuk surat-menyurat; email: szakaria@ukm.edu.my

 

 

 

 

 

 

 

 

sebelumnya