Sains Malaysiana 47(3)(2018): 619–633

http://dx.doi.org/10.17576/jsm-2018-4703-24

 

Peranti Suis Nanoelektromekanikal (NEM) Berunsurkan Grafin dan Tiub Nano Karbon (CNT)

(Nanoelectromechanical Switch Devices Based on Graphene and Carbon Nanotube (CNT))

 

MOHD AMIR ZULKEFLI, MOHD AMBRI MOHAMED*, KIM S SIOW & BURHANUDDIN YEOP MAJLIS

 

Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Diserahkan: 3 Julai 2017/Diterima: 23 Oktober 2017

 

ABSTRAK

Suis nanoelektromekanikal (NEM) mempunyai persamaan dengan suis konvensional semikonduktor apabila digunakan sebagai transistor dan penderia walaupun prinsip operasinya berbeza. Perbezaan prinsip operasi suis ini memberikan kelebihan kepada suis NEM untuk beroperasi dalam persekitaran yang melampau manakala suis konvensional semikonduktor mempunyai kelebihan daripada segi infrastruktur fabrikasi yang canggih. Dalam kertas ini, kami mengulas kemajuan terbaru dan potensi teknologi NEM dalam aplikasi pensuisan berdasarkan bahan berasaskan karbon seperti CNT dan grafin. Kemajuan reka bentuk geometri suis NEM seperti struktur rusuk berlubang, mempunyai kelebihan daripada segi voltan operasi peranti yang rendah, turut dibincangkan dalam kertas ini. Berdasarkan Kitaran Gemburan Gartner, teknologi, proses dan produk untuk suis NEM atau hibrid NEM-CMOS berada di takuk berbeza iaitu di jurang ilusi, cerun pencerahan dan dataran tinggi produktiviti. Kemudian, reka bentuk geometri suis NEM berasaskan bahan-bahan ini diulas dengan lengkap berdasarkan kajian kepustakaan terbaru. Kami mengenal pasti cabaran yang terlibat dalam proses fabrikasi suis NEM berasaskan CNT dan grafin seperti kebocoran get dan proses litografi yang mencabar. Kesimpulannya, kami meringkaskan kertas kajian ini kepada beberapa sudut perspektif, pandangan dan peluang pada masa depan dalam teknologi suis NEM.

 

Kata kunci: Bahan karbon; grafin; nanoelektromekanikal (NEM); suis NEM; tiub nano karbon (CNT)

 

 

ABSTRACT

Nanoelectromechanical (NEM) switches are similar to the conventional semiconductor switches when used as a transistor and sensor, in spite of their fundamental differences in operating principles. This difference in operation allows NEM switches to perform better in harsh conditions while conventional semiconductor switch has the advantage of matured technology in fabrication. In this paper, we reviewed the recent progress and potential of NEM technology in switching applications based on carbon-based materials focusing on CNT and graphene. The progress in geometrical design like perforated beam structure, which can reduce its operation voltage, was also discussed. Based on Gartner Hype Cycle, the technology, process and product of NEM switch or hybrid NEM-CMOS switch was located at various stages such as the trough of disillusionment, slope enlightment and plateau of productivity, respectively. Then, the geometrical design of NEM switch based on these materials was reviewed from the recent literatures. We also identified the challenges involved in fabrication of CNT and graphene based NEM switch technology, such as, short channel effect, gate leakage and challenge in lithography process. Finally, we concluded this paper with a few perspectives, insights and opportunities in NEM switch technology.

 

Keywords: Carbon-based material; carbon nanotube (CNT); graphene; nanoelectromechanical (NEM); NEM switch

RUJUKAN

Abele, N., Fritschi, R., Boucart, K., Casset, F., Ancey, P. & Ionescu, A.M. 2005. Suspended-Gate MOSFET: Bringing new MEMS functionality into solid-state MOS transistor. IEEE International Electron Devices Meeting pp. 479-481. doi:10.1109/IEDM.2005.1609384.

Amaratunga, G.A.J. 2002. A dawn for carbon electronics?. Science 297(5587): 1657-1658. doi:10.1126/science.1075868.

Avouris, P., Chen, Z. & Perebeinos, V. 2007. Carbon-based electronics. Nature Nanotechnology 2(10): 605-615. doi:10.1038/nnano.2007.300.

Balandin, A.A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F. & Lau, C.N. 2008. Superior thermal conductivity of single-layer graphene. Nano Letters 8(3): 902-907.

Bolotin, K.I., Sikes, K.J., Jiang, Z., Klima, M., Fudenberg, G., Hone, J., Kim, P. & Stormer, H.L. 2008. Ultrahigh electron mobility in suspended graphene. Solid State Communications 146(9): 351-355. doi:10.1016/j.ssc.2008.02.024.

Cassell, A.M., Raymakers, J.A., Kong, J. & Dai, H. 1999. Large scale CVD synthesis of single-walled carbon nanotubes. The Journal of Physical Chemistry B 103(31): 6484-6492. doi:10.1021/jp990957s.

Cimalla, V., Pezoldt, J. & Ambacher, O. 2007. Group III nitride and SiC based MEMS and NEMS: Materials properties, technology and applications. Journal of Physics D: Applied Physics 40(20): 6386. doi:10.1088/0022-3727/40/20/S19.

Cui, Y. & Lieber, C.M. 2001. Functional nanoscale electronic devices assembled using silicon nanowire building blocks. Science 291(5505): 851-853. doi:10.1126/ science.291.5505.851.

Dadgour, H.F. & Banerjee, K. 2009. Hybrid NEMS-CMOS integrated circuits: A novel strategy for energy-efficient designs. IET Computers & Digital Techniques 3(6): 593-608. doi:10.1049/iet-cdt.2008.0148.

Dadgour, H.F. & Banerjee, K. 2007. Design and analysis of hybrid NEMS-CMOS circuits for ultra low-power applications. In Proceedings of the 44th Annual Design Automation Conference. pp. 306-311. ACM. doi:10.1109/ DAC.2007.375177.

Dadgour, H., Hussain, M.M. & Banerjee, K. 2010. A new paradigm in the design of energy-efficient digital circuits using laterally-actuated double-gate NEMS. Proceedings of the 16th ACM/IEEE International Symposium on Low Power Electronics and Design. pp. 7-12. ACM.. doi:10.1145/1840845.1840848.

Dadgour, H., Cassell, A.M. & Banerjee, K. 2008. Scaling and variability analysis of CNT-based NEMS devices and circuits with implications for process design. IEEE International Electron Devices Meeting, 2008. IEDM 2008. pp. 1-4. doi:10.1109/IEDM.2008.4796742.

Davidson, B.D., Seghete, D., George, S.M. & Bright, V.M. 2011. ALD Tungsten NEMS switches and tunneling devices. Sensors and Actuators A: Physical 166(2): 269-276. doi:10.1016/j.sna.2009.07.022.

Dekker, C., Tans, S.J., Devoret, M.H., Dai, H., Smalley, R.E., Thess, A. & Georliga, L.J. 1997. Individual single-wall carbon nanotubes as quantum wires. Nature 386(6624): 474-477. doi:10.1038/386474a0.

Deshpande, V.V., Chiu, H.Y., Postma, H.C., Miko, C., Forro, L. & Bockrath, M. 2006. Carbon nanotube linear bearing nanoswitches. Nano Letters 6(6): 1092-1095. doi:10.1021/ nl052513f.

Dujardin, E., Derycke, V., Goffman, M.F., Lefevre, R. & Bourgoin, J.P. 2005. Self-assembled switches based on electroactuated multiwalled nanotubes. Applied Physics Letters 87(19): 193107.doi:10.1063/1.2126805.

Eichler, A., Moser, J., Chaste, J., Zdrojek, M. & Bachtold, A. 2011. Nonlinear damping in mechanical resonators made from carbon nanotubes and graphene. Nature Nanotechnology 6(6): 339-342. doi:10.1038/nnano.2011.71.

Feng, X.L., Matheny, M.H., Zorman, C., Mehregany, A.M. & Roukes, M.L. 2010. Low voltage nanoelectromechanical switches based on silicon carbide nanowires. Nano Letters 10(8): 2891-2896. doi:10.1021/nl1009734.

Frank, I.W., Tanenbaum, D.M., Van der Zande, A.M. & McEuen, P.L. 2007. Mechanical properties of suspended graphene sheets. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena 25(6): 2558-2561. doi:10.1116/1.2789446.

Franklin, A.D. & Chen, Z. 2010. Length scaling of carbon nanotube transistors. Nature Nanotechnology 5(12): 858-862. doi:10.1038/nnano.2010.220.

Geim, A.K. & Novoselov, K.S. 2007. The rise of graphene. Nature Materials 6(3): 183-191. doi:10.1038/nmat1849.

Han, J.W., Ahn, J.H., Kim, M.W., Lee, J.O., Yoon, J.B. & Choi, Y.K. 2010. Nanowire mechanical switch with a builtin diode. Small 6(11): 1197-1200. doi:10.1002/smll.201000170.

Hopcroft, M.A., Nix, W.D. & Kenny, T.W. 2010. What is the Young's modulus of silicon? Journal of Microelectromechanical Systems 19(2): 229-238.doi:10.1109/JMEMS.2009.2039697.

International Technology Roadmap for Semiconductors - ITRS 2.0 Home Page. 2015. http://www.itrs2.net/.

Jang, J.E., Cha, S.N., Choi, Y.J., Kang, D.J., Butler, T.P., Hasko, D.G., Jung, J.E., Kim, J.M. & Amaratunga, G.A. 2008. Nanoscale memory cell based on a nanoelectromechanical switched capacitor. Nature Nanotechnology 3(1): 26-30. doi:10.1038/nnano.2007.417.

Jang, J.E., Cha, S.N., Choi, Y., Amaratunga, G.A., Kang, D.J., Hasko, D.G., Jung, J.E. & Kim, J.M. 2005. Nanoelectromechanical switches with vertically aligned carbon nanotubes. Applied Physics Letters 87(16): 163114. doi:10.1063/1.2077858.

Jang, W.W., Lee, J.O., Yoon, J.B., Kim, M.S., Lee, J.M., Kim, S.M., Cho, K.H., Kim, D.W., Park, D. & Lee, W.S. 2008a.

Fabrication and characterization of a nanoelectromechanical switch with 15-nm-thick suspension air gap. Applied Physics Letters 92(10): 103110. doi:10.1063/1.2892659.

Jang, W.W., Yoon, J.B., Kim, M.S., Lee, J.M., Kim, S.M., Yoon, E.J., Cho, K.H. & Park, D. 2008b. NEMS switch with 30nm-thick beam and 20nm-thick air-gap for high density non-volatile memory applications. Solid-State Electronics 52(10): 1578-1583. doi:10.1016/j.sse.2008.06.026.

Jensen, K., Kim, K. & Zettl, A. 2008. An atomic-resolution nanomechanical mass sensor. Nature Nanotechnology 3(9): 533-537. doi:10.1038/nnano.2008.200.

Kim, J.H., Chen, Z.C., Kwon, S. & Xiang, J. 2014. Three-terminal nanoelectromechanical field effect transistor with abrupt subthreshold slope. Nano Letters 14(3): 1687-1691. doi:10.1021/nl5006355.

Kim, P. & Lieberl, C.M. 1999. Nanotube nanotweezers. Science 286(5447): 2148-2150. doi:10.1126/science.286.5447.2148.

Kim, S.M., Song, E.B., Lee, S., Seo, S., Seo, D.H., Hwang, Y., Candler, R. & Wang, K.L. 2011. Suspended few-layer graphene beam electromechanical switch with abrupt on-off characteristics and minimal leakage current. Applied Physics Letters 99(2): 023103. doi:10.1063/1.3610571.

Krishnan, A., Dujardin, E., Ebbesen, T.W., Yianilos, P.N. & Treacy, M.M.J. 1998. Young’s modulus of single-walled nanotubes. Physical Review B 58(20): 14013. doi:10.1103/ PhysRevB.58.14013.

Lee, J.O., Kim, M.W., Ko, S.D., Kang, H.O., Bae, W.H., Kang, M.H., Kim, K., Yoo, D.E. & Yoon, J.B. 2009. 3-terminal nanoelectromechanical switching device in insulating liquid media for low voltage operation and reliability improvement. 2009 IEEE International Electron Devices Meeting (IEDM). pp. 1-4. doi:10.1109/IEDM.2009.5424380.

Lee, J.O., Song, Y.H., Kim, M.W., Kang, M.H., Oh, J.S., Yang, H.H. & Yoon, J.B. 2013. A sub-1-volt nanoelectromechanical switching device. Nature Nanotechnology 8(1): 36-40. doi:10.1038/nnano.2012.208.

Lee, T.H., Bhunia, S. & Mehregany, M. 2010. Electromechanical computing at 500°C with silicon carbide. Science 329(5997): 1316-1318. doi:10.1126/science.1192511.

Lee, S.W., Lee, D.S., Morjan, R.E., Jhang, S.H., Sveningsson, M., Nerushev, O.A., Park, Y.W. & Campbell, E.E.B. 2004. A three-terminal carbon nanorelay. Nano Letters 4(10): 2027- 2030. doi:10.1021/nl049053v.

Li, P., Jing, G., Zhang, B., Sando, S. & Cui, T. 2014. Single-crystalline monolayer and multilayer graphene nano switches. Applied Physics Letters 104(11): 113110. doi:10.1063/1.4868869.

Li, S., Yu, Z., Yen, S.F., Tang, W.C. & Burke, P.J. 2004. Carbon nanotube transistor operation at 2.6 GHz. Nano Letters 4(4): 753-756. doi:10.1021/nl0498740.

Liao, M. & Koide, Y. 2011. Carbon-based materials: Growth, properties, MEMS/NEMS technologies, and MEM/NEM switches. Critical Reviews in Solid State and Materials Sciences 36(2): 66-101. doi:10.1080/10408436.2011.572748.

Liu, X., Suk, J.W., Boddeti, N.G., Cantley, L., Wang, L., Gray, J.M., Hall, H.J., Bright, V.M., Rogers, C.T., Dunn, M.L. & Ruoff, R.S. 2014. Large arrays and properties of 3terminal graphene nanoelectromechanical switches. Advanced Materials 26(10): 1571-1576. doi:10.1002/adma.201304949.

Loh, O.Y. & Espinosa, H.D. 2012. Nanoelectromechanical contact switches. Nature Nanotechnology 7(5): 283-295. doi:10.1038/nnano.2012.40.

Loh, O., Wei, X., Sullivan, J., Ocola, L.E., Divan, R. & Espinosa, H.D. 2012. Carbon-carbon contacts for robust nanoelectromechanical switches. Advanced Materials 24(18): 2463-2468. doi:10.1002/adma.201104889.

Loh, O., Wei, X., Ke, C., Sullivan, J. & Espinosa, H.D. 2011. Robust carbonnanotubebased nanoelectromechanical devices: Understanding and eliminating prevalent failure modes using alternative electrode materials. Small 7(1): 79- 86. doi:10.1002/smll.201001166.

Milaninia, K.M., Baldo, M.A., Reina, A. & Kong, J. 2009. All graphene electromechanical switch fabricated by chemical vapor deposition. Applied Physics Letters 95(18): 183105. doi:10.1063/1.3259415.

Moldovan, C.F., Vitale, W.A., Sharma, P., Bernard, L.S. & Ionescu, A.M. 2015. Fabrication process and characterization of suspended graphene membranes for RF NEMS capacitive switches. Microelectronic Engineering 145: 5-8. doi:10.1016/j.mee.2015.01.032.

Moore, G.E. 1965. Cramming more components onto integrated circuits. Electronics 38(8): 82-85. doi:10.1109/ JPROC.1998.658762.

Murali, R., Brenner, K., Yang, Y., Beck, T. & Meindl, J.D. 2009. Resistivity of graphene nanoribbon interconnects. IEEE Electron Device Letters 30: 611-613. doi:10.1109/ LED.2009.2020182.

Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V. & Firsov, A.A. 2004. Electric field effect in atomically thin carbon films. Science 306(5696): 666-669. doi:10.1126/science.1102896.

Peng, B., Locascio, M., Zapol, P., Li, S., Mielke, S.L., Schatz, G.C. & Espinosa, H.D. 2008. Measurements of near-ultimate strength for multiwalled carbon nanotubes and irradiation-induced crosslinking improvements. Nature Nanotechnology 3(10): 626-631. doi:10.1038/nnano.2008.211.

Peschot, A., Qian, C. & Liu, T.J.K. 2015. Nanoelectromechanical switches for low-power digital computing. Micromachines 6(8): 1046-1065. doi:10.3390/mi6081046.

Qian, Y., Lou, L., Julius Tsai, M. & Lee, C. 2012. A dual-silicon-nanowires based U-shape nanoelectromechanical switch with low pull-in voltage. Applied Physics Letters 100 113102: 2010-2013. doi:10.1063/1.3693382.

Rueckes, T., Kim, K., Joselevich, E., Tseng, G.Y., Cheung, C.L. & Lieber, C.M. 2000. Carbon nanotube-based nonvolatile random access memory for molecular computing. Science 289(5476): 9497. doi:10.1126/science.289.5476.94.

Schwierz, F. 2010. Graphene transistors. Nature Nanotech 5(7): 487-496. doi:10.1038/nnano.2010.89.

Shi, Z., Lu, H., Zhang, L., Yang, R., Wang, Y., Liu, D., Guo, H., Shi, D., Gao, H., Wang, E. & Zhang, G. 2012. Studies of graphene-based nanoelectromechanical switches. Nano Research 5(2): 82-87. doi:10.1007/s12274-011-0187-9.

Siow, K.S. 2017. Graphite exfoliation to commercialize graphene technology. Sains Malaysiana 46(7): 1047-1059.

Stampfer, C., Jungen, A., Linderman, R., Obergfell, D., Roth, S. & Hierold, C. 2006. Nano-electromechanical displacement sensing based on single-walled carbon nanotubes. Nano Letters 6(7): 1449-1453. doi:10.1021/nl0606527.

Standley, B., Bao, W., Zhang, H., Bruck, J., Lau, C.N. & Bockrath, M. 2008. Graphene-based atomic-scale switches. Nano Letters 8(10): 3345-3449. doi:10.1021/nl801774a.

Sun, J., Muruganathan, M., Kanetake, N. & Mizuta, H. 2016a. Locally-actuated graphene-based nano-electro-mechanical switch. Micromachines 7(124): 1-6. doi:10.3390/mi7070124.

Sun, J., Schmidt, M.E., Muruganathan, M., Chong, H.M. & Mizuta, H. 2016b. Large-scale nanoelectromechanical switches based on directly deposited nanocrystalline graphene on insulating substrates. Nanoscale 8(12): 6659-6665. doi:10.1039/C6NR00253F.

Sun, J., Wang, W., Muruganathan, M. & Mizuta, H. 2014. Low pull-in voltage graphene electromechanical switch fabricated with a polymer sacrificial spacer. Applied Physics Letters 105(33103): 2-5. doi:10.1063/1.4891055.

Theis, T.N. & Solomon, P.M. 2012. It’s time to reinvent the transistor! Science 327(5973): 1600-1601. doi:10.1126/ science.1187597.

Wei, D., Liu, Y., Zhang, H., Huang, L., Wu, B., Chen, J. & Yu, G. 2009. Scalable synthesis of few-layer graphene ribbons with controlled morphologies by a template method and their applications in nanoelectromechanical switches. JACS Articles 131: 11147-11154. doi:10.1021/ja903092k.

Yavari, F., Kritzinger, C., Gaire, C., Song, L., Gulapalli, H., BorcaTasciuc, T., Ajayan, P.M. & Koratkar, N. 2010. Tunable bandgap in graphene by the controlled adsorption of water molecules. Small 6(22): 2535-2538. doi:10.1002/ smll.201001384.

Ziegler, K.J., Lyons, D.M., Holmes, J.D., Erts, D., Polyakov, B., Olin, H., Svensson, K. & Olsson, E. 2004. Bistable nanoelectromechanical devices. Applied Physics Letters 84(20): 4074-4076. doi:10.1063/1.1751622.

Zulkefli, M.A., Mohamed, M.A., Siow, K.S., Yeop Majlis, B., Kulothungan, J., Muruganathan, M. & Mizuta, H. 2017. Three-dimensional finite element method simulation of perforated graphene nano-electro-mechanical (NEM) switches. Micromachines 8(8): 236. doi:10.3390/mi8080236.

Zulkefli, M.A., Mohamed, M.A., Siow, K.S. & Majlis, B.Y. 2016. Optimization of beam length and air gap of suspended graphene NEMS switch for low pull-in voltage application. 2016 IEEE International Conference on Semiconductor Electronics (ICSE) 1: 29-32. doi:10.1109/ SMELEC.2016.7573583.

 

*Pengarang untuk surat-menyurat; email: ambri@ukm.edu.my

 

 

 

sebelumnya