Sains Malaysiana 47(4)(2018): 789-795

http://dx.doi.org/10.17576/jsm-2018-4704-18

 

Kebergantungan Suhu dengan Penggunaan Tiub Kuarza Relau ke atas Sel Suria Dwi-Muka

(Temperature Dependences by using Furnace Quartz Tube on Bifacial Solar Cell)

 

NURUL AQIDAH MOHD SININ, MOHD ADIB IBRAHIM*, SUHAILA SEPEAI, MOHD ASRI MAT TERIDI, NORASIKIN AHMAD LUDIN, KAMARUZZAMAN SOPIAN & SALEEM H. ZAIDI

 

Institut Penyelidikan Tenaga Suria (SERI), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Diserahkan: 30 Jun 2017/Diterima: 9 November 2017

 

ABSTRAK

 

Sel suria digunakan untuk menawan foton untuk menjana tenaga. Walau bagaimanapun, penambahbaikan sel diperlukan untuk meningkatkan jumlah penangkapan foton dan juga untuk meningkatkan kecekapan sel. Ini melibatkan keseluruhan proses pembuatan sel, dengan proses penyepuhlindapan adalah salah satu daripada langkah penting yang perlu dioptimumkan. Percetakan perlogaman menggunakan dwi pembakaran merupakan kaedah yang paling biasa digunakan dalam penghasilan sel suria kristal secara komersial. Aluminium (Al) digunakan pada bahagian belakang sel sebagai medan permukaan belakang dan penyambung belakang manakala perak (Ag) dicetak pada bahagian hadapan sebagai grid pemungut. Proses dwi pembakaran bagi komponen ini adalah penting dalam menentukan kecekapan sel. Oleh itu, dalam kajian ini, rawatan pembakaran telah dikaji dengan menggunakan relau tiub kuarza (QTF) dengan perubahan suhu pembakaran (700, 750, 800 and 850°C) sebagai satu percubaan untuk mendapatkan kecekapan yang tinggi serta meningkatkan kesan pemirauan persimpangan Ag. Apabila suhu meningkat, sifat elektrik sel suria dwi-muka juga turut meningkat. Kebergantungan suhu menunjukkan rintangan pirau yang tinggi disebabkan oleh proses penyejukan yang pantas selepas proses pembakaran dan seterusnya membawa kepada faktor isi dan kecekapan sel yang tinggi.

 

Kata kunci: Kebergantungan suhu; medan permukaan belakang; pemirauan persimpangan; sel suria dwi-muka; tiub kuarza relau

 

ABSTRACT

 

Solar cells are used to capture photons to generate energy. However, cell enhancements are needed to increase the amount of photon capture and also to increase cell efficiency. This involves the entire cell manufacturing process, where the annealing process is one of the most important steps needs to be optimized. Metallization printing using dual combustion is the most commonly used method in the production of commercial crystalline solar cells. Aluminum (Al) is used on the back of the cell as a back surface and rear connector while silver (Ag) is printed on the front as a collector grid. The dual combustion process for this component is important in determining the efficiency of the cells. Therefore, in this study, combustion treatment has been studied by using quartz tubes furnace (QTF) with the change of combustion temperature (700, 750, 800 and 850°C) as an attempt to obtain high efficiency and increase the shunting effect of Ag junction. As temperatures rise, the electric properties of the bifacial solar cells also increase. Temperature dependence shows high shunt resistances due to rapid cooling process after the combustion process and thus leading to fill factor and high cell efficiency.

 

Keywords: Bifacial solar cells; furnace quartz tube; rear surface plane; shunting junction; temperature dependence

RUJUKAN

 

Ballif, C., Huljić, D.M., Willeke, G. & Hessler-Wyser, A. 2003. Silver thick-film contacts on highly doped n-type silicon emitters: Structural and electronic properties of the interface. Applied Physics Letters 82(12): 1878-1880.

Erath, D., Filipović, A., Retzlaff, M., Goetz, A.K., Clement,  F., Biro, D. & Preu, R. 2010. Advanced screen printing technique for high definition front side metallization of crystalline silicon solar cells. Solar Energy Materials and Solar Cells 94(1): 57-61.

Grupp, G., Huljik, D.M., Preu, R., Willeke, G. & Luther, J. 2005. Peak firing temperature dependence of the microstructure of Ag thick-film contacts on silicon solar cells - A detailed AFM study of the interface. Proc. 20th European Photovoltaic Solar Energy Conference. pp. 1379-1382.

Hilali, M., Rohatgi, A. & To, B. 2004. A review and understanding of screen-printed contacts and selective-emitter formation. In 14th Workshop on Crystalline Silicon Solar Cells and Modules 1617: 1-40.

Jeong, J.W., Rohatgi, A., Yelundur, V.,  Ebong, A., Rosenblum, M.D. & Kalejs, J.P. 2001. Enhanced silicon solar cell performance by rapid thermal firing of screen-printed metals. IEEE Transactions on Electron Devices 48(12): 2836-2841.

Kabir, M.I., Ibrahim, Z., Sopian, K. & Amin, N. 2010. Effect of structural variations in amorphous silicon based single and multi-junction solar cells from numerical analysis. Solar Energy Materials and Solar Cells 94(9): 1542-1545.

Kwon, T.Y., Kim, S.C., Kyung, D.Y., Jung, W.W., Kim, S.Y., Lee, Y.W., Kim, Y.K., Jang, K.S., Jung, S.W., Shin, M.C. & Yi, J.S. 2010. The effect of firing temperature profiles for the high efficiency of crystalline Si solar cells. Solar Energy Materials and Solar Cells 94(5): 823-829.

Richter, P.J., Bottari, F.J. & Wong, D.C. 2011. Rapid metallization paste firing of crystalline silicon solar cells. 37th IEEE Photovoltaic Specialists Conference (PVSC). pp. 2198-2201.

Sepeai, S., Sulaiman, M.Y., Sopian, K. & Zaidi, S.H. 2012. Surface passivation studies on n+pp+ bifacial solar cell. International Journal of Photoenergy 2012: Article ID. 278764.

Sepeai, S., Sulaiman, M.Y., Zaidi, S.H. & Sopian, K. 2011. Microstructural studies on fire-through front contact metallization of Si solar cells. 2011 IEEE Regional Symposium on Micro and Nano Electronics. pp. 364-367.

Vinod, P.N. 2008. Formation of fire-through silver metal contacts on the porous silicon surface for silicon solar cells. Conference Record of the IEEE Photovoltaic Specialists Conference. pp. 1-5.

 

*Pengarang untuk surat-menyurat; email: mdadib@ukm.edu.my

 

 

 

 

 

 

 

 

 

sebelumnya