Sains Malaysiana 47(4)(2018): 797-803

http://dx.doi.org/10.17576/jsm-2018-4704-19

 

Determination of Uranium Internal Dose Exposure through Soil Digestion Using

RDRC and URODC Software

(Penentuan Dos Dedahan Dalaman Uranium Melalui Penghadaman Tanih Menggunakan

Perisian RDRC dan URODC)

 

MOHD IZWAN ABDUL ADZIZ, NOR AMIRA AMALINA MOHD BADRI & KHOO KOK SIONG*

 

Pusat Pengajian Fizik Gunaan, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

Diserahkan: 14 September 2017/Diterima: 25 Oktober 2017

 

ABSTRACT

 

This study was conducted to determine the dose of internal exposure through ingestion of soil in the vicinity of the repository facility in Bukit Kledang, Ipoh, Perak. Data from this study can assess the risk of radiation exposure to the health of local population, specifically blood, liver and bone cancers. Activities of radionuclide 238U in MG and M10 in the gastric phase are 1.118 ± 0.062 and 1.232 ± 0.073 Bq/kg, while the respective activities in the gastrointestinal phase are 0.553 ± 0.051 and 0.905 ± 0.082 Bq/kg. Samples of M10 recorded the highest reading of internal exposure in both phases. Digestion of 2 g soil from M10 samples on gastric phase generated the annual effective dose of 3.168 μSv/year with an assessment of cancer risk by 0.001% within 70 years to public. Organ dose for blood, liver and bone were 0.59, 11.60 and 65.95 μSv, respectively. Analysis of organ doses based on the concentration of 238U found that M10 has higher dose compared to MG. Risk assessment predicted for 70 years after the ingestion of the soil for blood cancer was 0.003% and liver cancer was 0.004% while the highest cancer risk was for bone cancer with 0.023%. Although the concentration of specific activity of  238U identified is low, it is shown that the internal dose exposure as a result of digestion of radionuclides are below the standard and can be considered as safe for public.

 

Keywords: Cancer risk; internal dose exposure; repository facility; soil sample; 238U

 

ABSTRAK

 

Kajian ini dijalankan untuk menentukan dos dedahan dalaman melalui penghadaman tanih di kawasan sekitar fasiliti repositori di Bukit Kledang, Ipoh, Perak. Data daripada kajian ini dapat menilai risiko dedahan sinaran terhadap kesihatan penduduk setempat khususnya penyakit kanser darah, hati dan tulang. Aktiviti spesifik radionuklid 238U di MG dan M10 pada fasa gastrik masing-masing adalah 1.118 ± 0.062 dan 1.232 ± 0.073 Bq/kg, manakala nilai aktiviti spesifik tanih di MG dan M10 pada fasa gastrousus pula masing-masing adalah 0.553 ± 0.051 dan 0.905 ± 0.082 Bq/ kg. Sampel M10 merekodkan bacaan dos dedahan dalaman tertinggi berbanding dengan sampel MG pada kedua-dua fasa. Penghadaman 2 g tanih pada fasa gastrik sampel M10, merekodkan dos berkesan tahunan sebanyak 3.168 µSv/ tahun dengan penilaian risiko kanser sebanyak 0.001% dalam jangka masa 70 tahun untuk orang awam. Dos organ bagi darah, hati dan tulang masing-masing adalah sebanyak 0.59, 11.60 dan 65.95 µSv. Dos organ ini juga dianalisis berdasarkan kepekatan 238U. Didapati bahawa dos ini lebih tinggi untuk M10 berbanding MG. Penilaian risiko dalam jangka masa 70 tahun bagi kanser darah adalah 0.003%, kanser hati sebanyak 0.004% manakala paling tinggi untuk mendapat kanser tulang iaitu sebanyak 0.023%. Lantaran nilai kepekatan aktiviti 238U yang dikenal pasti adalah rendah maka ia membuktikan bahawa dedahan sinaran dan dos dedahan dalaman sinaran akibat penghadaman radionuklid ini adalah di bawah piawai yang ditetapkan.

 

Kata kunci: Dos dedahan dalaman; fasiliti repositori; risiko kanser; sampel tanih; 238U

 

RUJUKAN

 

AELB. 2016. Tapak Repositori Jangka Panjang di Malaysia. Bangi: Lembaga Perlesenan Tenaga Atom Malaysia.

Al-Kharouf, S.J., Al-Hamarneh, I.F. & Dababneh, M. 2008. Natural radioactivity, dose assessment and uranium uptake by agricultural crops at Khan Al-Zabeeb, Jordan. Journal of Environmental Radioactivity 99(7): 1192-1199.

ATSDR. 2013. Toxicological Profile for Uranium. Georgia: Agency for Toxic Substances and Disease Registry.

ATSDR. 1999. Toxicological Profile for Uranium. Georgia: Agency for Toxic Substances and Disease Registry.

Daniela, R. & Kratz, K. 1996. Determination of organic fluorine in aqueous samples with neutron activation analysis in comparison with the DIN method. Fresenius’ Journal of Analytical Chemistry 354(7-8): 892-894.

Hollriegl, V., Li, W.B., Leopold, K., Gerstmann, U. & Oeh, U. 2010. Solubility of uranium and thorium from healing earth in synthetic gut fluids: A case study for use in dose assessment. Science of Total Environment 408(23): 5794- 5800.

ICRP 72. 2007. Uranium series ICRP 72 dose coefficients for the public.

Intawongse, M. & Dean, J.R. 2006. In-vitro testing for assessing oral bioaccessibility of trace metals in soil and food samples. Journal of Trends of Analytical Chemistry 25(9): 876-886.

Kathren, R.L. & Burklin, R.K. 2008. Acute chemical toxicity of uranium. Health Physics 94(2): 170-179.

Lee, S.K. & Wagiran, H. 2014. A survey of gross alpha and gross beta activity in soil samples in Kinta District, Perak, Malaysia. Radiation Protection Dosimetry 162(3): 345-350.

Nur, S.A.R., Sukiman, S., Amran, A.M., Faizal, M. & Khoo, K.S. 2015. Solubility of 238U radionuclide from various types of soil in synthetic gastrointestinal fluids using “US in vitro” digestion method. AIP Conference Proceedings 1659(1): 050004.

Oliver, M.A. 1999. Soil and human health: A review. European Journal of Soil Science 48(4): 573-592.

Pulhani, V.A., Dafauti, S., Hedge, A.G., Sharma, R.M. & Mishra, U.C. 2005. Uptake and distribution of natural radioactivity in wheat plants from soil. Journal of Environmental Radioactivity 79(3): 331-346.

Qing, H. 2011. Radioactivity Abundance in Simulation. http://www.hep.princeton.edu/~mcdonald/dayabay/He/ Radioactivity.pdf. Accessed on 1 May 2017.

Traber, S.C., Hollriegl, V., Li, W.B., Nebelung, K., Ruhm, W., Oeh, U. & Michalke, B. 2015. Calculation of internal dose from ingested soil-derived uranium in humans: Application of a new method. Radiation and Environmental Biophysics 54(3): 265-272.

Tzortzis, M., Svoukis, E. & Tsetos, H. 2004. A comprehensive study of natural gamma radioactivity levels and associated dose rates from surface soils in Cyprus. Radiation Protection Dosimetry 109(3): 217-224.

UNSCEAR. 2000. Sources and Effects of Ionizing Radiation. http:// www.unscear.org/docs/publications/2000/UNSCEAR_2000_ Report_vol.I.pdf. Accessed on 1 January 2017.

UNSCEAR. 2008. Sources and Effects of Ionizing Radiation. http:// www.unscear.org/docs/publications/2008/UNSCEAR_2008_ gA Report-CORR.pdf. Accessed on 20 January 2017.

WHO. 2003. Guidelines for Drinking Water Quality. Geneva: World Health Organization.

WISE. 2016. Dose and Risk Calculators. http://www.wise- uranium.org/. Accessed on 1 December 2016.

Yasmin, M.I.P., Rashid, N.S.A., Majid, A.A. & Khoo, K.S. 2016. Internal dose assessment of U-238 contaminated soils based on in-vitro gastrointestinal protocol. AIP Conference Proceedings 1799(1): 030005.

 

*Pengarang untuk surat-menyurat; email: khookoksiong@gmail.com

 

 

 

 

 

 

 

 

 

sebelumnya