Sains Malaysiana 47(6)(2018): 1117–1122

http://dx.doi.org/10.17576/jsm-2018-4706-06

 

Synthesis and Thermal Properties of Poly(ethylene glycol)-polydimetylsiloxane Crosslinked Copolymers

(Sintesis dan Sifat Terma Kopolimer Taut Silang Poli(etilena glikol)-polidimetilsiloksana)

 

AIN ATHIRAH ZAINUDDIN1, RIZAFIZAH OTHAMAN1, WAN SYAIDATUL AQMA WAN MOHD NOOR1, TAKENO AKIYOSHI2, TAKAHASHI SHINYA2 & FARAH HANNAN ANUAR1*

 

1School of Chemical Sciences and Food Technology, Faculty of Science and Technology

Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia

 

2Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University

1-1 Yanagifo, Gifu-shi, Gifu 501-1193, Japan

 

Diserahkan: 15 September 2017/Diterima: 28 November 2017

 

 

ABSTRACT

Poly(ethylene glycol)-polydimethylsiloxane (PEG-PDMS) crosslinked copolymers with mol ratios PEG:PDMS:Glycerol of 5:3:2, 6:2:2 and 7:1:2 have been prepared and characterized. The synthesis of the copolymers was carried out by the reaction between hydroxyl groups of PEG, PDMS and glycerol with isocyanate groups of 1,6-hexamethyelene diisocyanate (HMDI). In the reaction, glycerol was acted as the cross linker. The copolymers were then characterized by FTIR spectroscopy. The thermal behaviour was investigated by DSC and TGA. Based on FTIR results, the crosslinked structure of the copolymers was confirmed by the presence of absorption peak at 3350 and 1710 cm-1 which indicated the (-N-H) stretching and carbonyl (-C=O) correspond to urethane links. This showed that the hydroxyl groups of PEG, PDMS and glycerol have reacted to isocyanate groups of HMDI. The copolymers showed melting temperature (Tm) of PEG segments from 22°C to 27°C and glass transition temperature (Tg) from -11°C to -6°C. Meanwhile, the PDMS segment showed values from -53°C to -56°C for Tm, and Tg from -118°C to -122°C. Data obtained from the thermal analysis indicate that thermal stability increases with increasing PDMS mol ratio.

 

Keywords: Crosslinked copolymer; polydimethylsiloxane; poly(ethylene glycol); thermal

 

ABSTRAK

Kopolimer taut silang poli(etilena glikol)-polidimetilsiloksana (PEG-PDMS) dengan nisbah PEG:PDMS:Gliserol 5:3:2, 6:2:2 dan 7:1:2 telah disediakan dan dicirikan. Sintesis kopolimer dilakukan dengan tindak balas kumpulan hidroksi PEG, PDMS dan gliserol dengan kumpulan isosianat 1,6-heksametilena diisosianat (HMDI). Dalam tindak balas ini, gliserol berperanan sebagai agen taut silang. Kesemua kopolimer kemudiannya dicirikan oleh spektroskopi inframerah (FTIR). Ciri terma kopolimer dilihat berdasarkan analisis kalorimetri imbasasan kebezaan (DSC) dan analisis termogravimetrik (TGA). Berdasarkan spektrum inframerah, struktur taut silang kopolimer ditentukan oleh kehadiran puncak serapan pada 3350 dan 1710 cm-1 yang menunjukkan regangan (-N-H) dan kumpulan karbonil (-C=O) yang sepadan dengan pautan uretana. Ini menunjukkan bahawa kumpulan hidroksi PEG, PDMS dan gliserol telah bertindak balas dengan kumpulan isosianat HMDI. Kopolimer menunjukkan suhu lebur (Tm) bagi segmen PEG daripada 22°C hingga 27°C dan suhu peralihan kaca (Tg) daripada -11°C hingga -6°C. Sementara itu, segmen PDMS menunjukkan nilai daripada -53°C hingga -56°C untuk Tm, dan Tg daripada -118°C hingga -122°C. Kestabilan degradasi kopolimer pula meningkat apabila nisbah mol PDMS meningkat.

 

Kata kunci: Kopolimer taut silang; polidimetilsiloksana; poli(etilena glikol); terma

RUJUKAN

Askari, F., Barikani, M., Barmar, M., Shokrolahi, F. & Vafayan, M. 2015. Study of thermal stability and degradation kinetics of polyurethane-ureas by thermogravimetry. Iran Polym. J. 24(9): 783-789.

Badri, K., Mohd Dawi, L.I. & Abd Aziz, N.A. 2013. Rigid polyurethane foam from glycolysed polyethylene terephthalate dissolved in palm-based polyol. Sains Malaysiana 42(4): 449-457.

Chattopadhyay, D.K. & Webster, D.C. 2009. Thermal stability and flame retardancy of polyurethanes. Prog. Polym. Sci. 34: 1068-1133.

Chuang, F., Tsen, W. & Shu, Y. 2004. The effect of different siloxane chain-extenders on the thermal degradation and stability of seg-mented polyurethanes. Polym. Degrad. Stab. 84: 69-77.

Clarson, S.J. & Semlyen, J.A. 1993. Siloxane Polymers. Englewood Cliffs, NJ: Prentice Hall.

Hamdani, S., Longuet, C., Perrin, D., Lopez-cuesta, J.M. & Ganachaud, F. 2009. Flame retardancy of silicone-based materials. Polym. Degrad. Stab. 94: 465-495.

Hong, Y., Guan, J., Fujimoto, K.L., Hashizume, L., Pelinescu, A.L. & Wagner, W.R. 2010. Tailoring the degradation kinetics of poly(ester carbonate urethane)urea thermoplastic elastomers for tissue engineering scaffolds. Biomaterials 31(15): 4249-4258.

Hood, M.A., Wang, B., Sands, J.M., La Scala, J.J., Beyer, F.L. & Li, C.Y. 2010. Morphology control of segmented polyurethanes by crystallization of hard and soft segments. Polymer 51: 2191-2198.

Król, P., Pielichowska, K. & Byczynski, L. 2010. Thermal degradation kinetics of polyurethane- s i l o x a n e anionomers. Thermochim Acta 91: 507-508.

Kawai, F. 1987. The biochemistry of degradation of polyethers. Crit. Rev. Biotechnol. 6(3): 273-307.

Kawai, F. & Enokibara, S. 1996. Symbiotic degradation of polyethylene glycol (peg) 20,000-phthalate polyester by phthalate ester- and peg 20,000-utilizing bacteria. J. Ferment. Bioeng. 82(6): 575-579.

Rangel-Vazquez, N.A. & Sanchez-Lopez, C. 2014. Spectroscopy analyses of polyurethane/polyaniline IPN using computational simulation (Amber, MM+ and PM3 Method). Polimeros 24(4): 453-463.

Shokrolahi, F. & Yeganeh, H. 2014. Soft segment composition and its influence on phase-separated morphology of PCL/ PEG-based poly(urethane urea)s. Iran Polym. J. 23: 505-512.

Sung-Il, L., Youn-Sik, L., Kee, S.N., Yoon, B.H. & Seuk-Beum, K. 2000. Degradable polyurethanes synthesized from poly(butylene succinate) polyol, poly(ethylene glycol), and 4,4’-Methylenebis(cyclohexyl isocyanate). Bull. Korean Chem. Soc. 21(11): 1145-1148.

Tyagi, D., Yilgor, I., McGrathm, J.E. & Wilkes, G.L. 1984. Segmented organosiloxane copolymers. 2. Thermal and mechanical properties of siloxane-urea copolymers. Polymer 25: 1807-1816.

Wang, C.B. & Cooper, S.L. 1983. Morphology and properties of segmented polyether polyurethaneureas. Macromolecules 16: 775-786.

Wang, F., Li, Z., Lannutti, J.L., Wagner, W.R. & Guan, J. 2009. Synthesis, characterization and surface modification of low moduli poly(ether caarbonate urethane)ureas for soft tissue engineering. Acta Biomater. 5: 2901-2912.

Wong, C.S. & Badri, K. 2010. Sifat terma dan kerintangan api poliuretana berasaskan minyak isirung sawit dan minyak kacang soya. Sains Malaysiana 39(5): 775-784.

Wu, L., You, B., Li, D. & Qian, F. 2000. The in vitro and in vivo stability of poly(urethane urea)s as biomedical materials. Polym. Degrad. Stab. 70: 65-69.

Yeh, J.T. & Shu, Y.C. 2010. Characteristics of the degradation and improvement of the thermal stability of poly(siloxane urethane) copolymers. J. Appl. Polym. Sci. 115: 2616-2628.

Zhang, X.M., Li, L. & Zhang, Y. 2013. Study on the surface structure and properties of PDMS/PMMA antifouling coatings. Physics Procedia. 50: 328-336.

 

*Pengarang untuk surat-menyurat; email: farahhannan@ukm.edu.my

 

 

 

sebelumnya